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Summary 
This paper describes a series of numerical 
investigations aimed at validating the concept of 
transition control by small roughness elements. Linear 
and nonlinear stability analyses are carried out in 
order to identify the most interesting pressure 
gradients and the Reynolds number range adapted for 
this type of control. Then the mechanisms leading to 
the formation of stationary vortices downstream of the 
roughness elements are investigated by Direct 
Numerical Simulations. 
 

1. INTRODUCTION 
Delaying the onset of laminar-turbulent transition 

on aircraft wings can reduce significantly the skin 
friction drag. Many theoretical, numerical and 
experimental investigations have demonstrated that 
“natural” transition is triggered by the breakdown of 
unstable waves generated by the disturbances which 
are present either in the free-stream (noise) or at the 
wall (surface defaults). On swept wings, distinction is 
made between Tollmien-Schlichting (TS) and 
crossflow (CF) waves. TS waves are the result of the 
instability of the boundary layer streamwise mean 
velocity profiles; they develop in regions of zero or 
positive pressure gradients. CF waves are the result of 
the instability of the boundary layer crossflow mean 
velocity profiles; they are unstable in regions of 
negative pressure gradient (accelerated flow), 
typically in the vicinity of the leading edge. A peculiar 
feature of CF instability is that zero frequency waves 
are highly amplified. They take the form of stationary 
vortices almost aligned with the external streamlines. 
Their initial amplitude is strongly linked with the 
wing surface polishing. 

Three strategies are currently used in order to 
extend the laminar flow area: NLF (Natural Laminar 
Flow), LFC (Laminar Flow Control by suction at the 
wall) and HLFC (Hybrid Laminar Flow Control). 
These techniques have been widely used for many 
years and proved their efficiency.  

Quite recently, an innovative solution for transition 
control has been proposed by W.S. Saric and his team 
at Arizona State University (ASU)  [1], [2], [3], [4]. It 
applies to the transition process dominated by the 
stationary vortices resulting from a “pure” CF 
instability. These vortices have a wavelength λt which 

can be computed from the linear stability theory. The 
idea is to artificially create stationary vortices by 
using a spanwise row of micron-sized roughness 
elements (MSR) close to the leading edge. The 
wavelength λk of the new vortices corresponds to the 
spacing between the roughness elements. For 
particular values of λk and for particular pressure 
gradients, the nonlinear interactions between natural 
and artificial vortices result in a reduction of the 
amplitude of the natural vortices (target modes). From 
a physical point of view, the artificial vortices (killer 
modes) create a steady distortion of the mean flow, 
which leads to a strong decrease in the growth rate of 
the target vortices. At the same time, if the amplitude 
of the killer modes remains below some critical 
threshold, transition is delayed.  

The general objective of this paper is to present a 
series of numerical investigations aimed at validating 
this new concept of transition control. The 
computations can be divided into two groups: one 
group dealing with stability analyses (linear and 
nonlinear), the second group dealing with Direct 
Numerical Simulations (DNS). 

The computations based on stability analyses are 
described in paragraph 2. After a brief description of 
the linear and nonlinear stability codes used in this 
study, these numerical tools are applied to several 
existing swept wing models. The goal is to determine 
if particular combinations of the geometrical and 
aerodynamic parameters would be suitable for a 
successful application of the transition control by 
roughness elements. 

The major shortcoming of the previous 
computations is that the roughness dimensions (in m) 
are ignored. They are represented in a more or less 
empirical way by imposing some initial velocity 
fluctuations (in ms-1) in the nonlinear stability 
computations. This is why DNS computations have 
been undertaken. The results of these fundamental 
investigations are presented in section 3. The 
objective is to examine in detail the receptivity 
mechanisms, i.e. to understand how the disturbances 
generated by the small roughness elements are 
transformed into stationary vortices and, hopefully, to 
establish the link between the dimensions of the 
roughness elements and the initial amplitude of the 
killer vortices.  
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2. LINEAR AND NONLINEAR STABILITY 
ANALYSES 

Numerical tools 

Linear phase 

The oldest method to characterise the boundary 
layer instabilities is based on the well-known linear 
Orr-Sommerfeld equation. The disturbances are 
written as: 

( )[ ]tzxiyrr ωβα −+= exp)(ˆ'  

r’ is a velocity, pressure or density fluctuation. r̂  is an 
amplitude function. y is normal to the surface. On a 
swept wing, x is measured along the wing surface in 
the direction normal to the leading edge, z is the 
spanwise direction. In the framework of the spatial 
theory, α and β are complex numbers representing the 
wave number components in the x and z directions; ω 
is real and represents the wave frequency. Assuming 
that the mean flow is parallel, the introduction of the 
previous expression into the linearised Navier-Stokes 
equations leads to ordinary differential equations for 
the amplitude functions. Numerically, one has to solve 
an eigenvalue problem: when the mean flow is 
specified, nontrivial solutions exist for particular 
combinations of (α, β, ω) only. 

The linear PSE (Parabolized Stability Equations) 
approach provides an improvement to the Orr-
Sommerfeld theory  [5]. The mean flow field and the 
amplitude functions now depend on both x and y, and 
α depends on x. With the assumption that the x-
dependence is slow, the numerical problem consists in 
solving a set of (nearly) parabolic equations in x, with 
initial disturbance profiles specified at some starting 
point x0. The PSE make it possible to take into account 
the nonparallel effects as well as the wall curvature. 
However, the results are usually very close to those of 
the parallel theory. 

To predict transition, the most popular method is the 
eN criterion. The so-called N factor is the total growth 
rate of the most unstable disturbances. It is computed 
by integrating –α i (opposite of the imaginary part of 
α) in the streamwise direction. It is assumed that 
transition occurs for some specified value Nt of N. Nt 
is usually close to 10 when CF disturbances play the 
major role in the transition process.  

Nonlinear phase 

The main interest of the linear PSE is to 
provide initial conditions for the nonlinear PSE which 
simulate the nonlinear wave interactions  [5]. The 
disturbances are now expressed as a double series of 
(n, m) modes of the form: 
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α nm is complex, β and ω are real numbers. The 
integers n and m characterise the frequency and the 
spanwise wavenumber, respectively. When these 
disturbances are introduced into the Navier-Stokes 
equations, a system of coupled partial differential 
equations is obtained; it is solved by a marching 
procedure, as it was already the case for the linear 
PSE. Any nonlinear PSE computation requires i) to 
choose the “most interesting” interaction scenario 
between particular modes which are referred to as 
major modes, ii) to impose initial amplitudes for the 
major modes. For two-dimensional flows, nonlinear 
computations end with a sudden increase of the major 
modes and of their harmonics; this simulates the 
appearance of turbulence. For three-dimensional flows 
governed by CF waves, the nonlinear interactions 
result in a saturation of the amplitude of all the modes, 
then the computation breaks down. It is generally 
assumed that transition starts “somewhere” between 
the beginning of the numerical saturation and the 
abscissa where the calculation ends. A more accurate 
transition prediction would require to use a secondary 
instability theory.  

Successive steps of the computations 
For a given configuration, the successive steps 

of the computations can be summarized as follows: 

-  The mean flow field is first determined from 
laminar boundary layer computations (3C3D code 
 [6]). 

- Then linear, local stability computations are 
performed with the CASTET code  [7],  [8] in order to 
determine the naturally most unstable wavelength λt 
(target mode). At this stage, the interaction scenario 
with the killer mode and the wavelength λk of this 
mode must be chosen.  

- Then linear, nonlocal stability computations 
provide the disturbance initial profiles which are 
necessary for starting the nonlinear computations 
(FANNY code  [9]).  

- Finally nonlinear computations are carried out for 
given initial amplitudes of the natural and artificial 
stationary vortices (NELLY code  [9]). This procedure 
is repeated with several initial amplitudes until an 
“interesting” interaction scenario is found. If no 
interesting scenario is identified, a new value of λk 
must be considered.     

Parametric study for existing wings 
After the numerical tools have been validated by 
comparison with the experimental data of Saric et al 
(see details in  [10]), a parametric investigation was 
undertaken for several swept wing models available at 
ONERA. These models have been previously tested in 



wind tunnel in natural conditions, i.e. without control. 
Three airfoils have been selected: 
- The ONERA D airfoil, tested in a research wind 
tunnel at ONERA Toulouse; 

- The DTP A airfoil, tested in the F2 wind tunnel at 
ONERA Le Fauga-Mauzac; 

- The DTP B model, also tested in the F2 wind tunnel. 

The objective is to determine in which conditions 
(sweep angle, angle of attack, Reynolds number) these 
models could be used in the future for fundamental 
transition control experiments. 

An example of numerically successful transition 
control 

In order to illustrate in detail the successive 
numerical steps, a configuration related to the DTP B 
model has been chosen. A photograph of this model 
mounted on the floor of  the F2 wind tunnel is shown 
in Figure 1. The chord C normal to the leading edge is 
0.7 m, the relative thickness is 13,4% and the span is 
about 2.5 m. The results described below correspond 
to a sweep angle ϕ equal to 40°, an angle of attack α 
equal to -6° and a free stream velocity V0 equal to 
70 ms-1. In these conditions, the chord Reynolds 
number Rc is close to 3.3 106.    

 
Figure 1- The DTP B model in the F2 wind tunnel 

The measured free-stream velocity distribution on the 
lower side (deduced from the measured pressure 
distribution) is plotted in Figure 2, where s is the 
distance normal to the leading edge, measured on the 
wing surface (it is thus the same distance as the one 
previously denoted as x). Experimentally, transition 
takes place at s/C ≈ 0.3, i.e. in a region of strong 
negative pressure gradient. Therefore transition is 
expected to be triggered by a pure CF instability. 

Using the free-stream velocity data of Figure 2, 
laminar boundary layer computations are carried out. 
They provide the necessary data for linear, local 
stability computations. As we are interested in 

stationary waves only, the computations are restricted 
to ω = 0.  

From these stability results can be determined the 
most amplified spanwise wavenumber βt = 2π/λt 
associated with the target mode (0,2) (see Table 
below). The corresponding N factor at transition is 
close to 10, a value which is classical for CF induced 
transition.  
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Figure 2- External velocity distribution 

At this stage, the interaction scenario to be 
investigated by nonlinear PSE must be chosen. The 
most difficult problem lies in the choice of the killer 
mode. In the ASU experiments, MSR with a spanwise 
wavelength λk = 2/3 λt (or βk = 3/2 βt) resulted in a 
significant delay of the transition point. The same 
ratio was adopted in the present computations. 
Consequently, the following modes were accounted 
for in the nonlinear calculations:  

mode λ (mm) Initial  
amplitude 

Nature

(0,1) 2 λt A0 -- 
(0,2) λt A1 target 
(0,3) 2/3 λt A2 killer 

 The (0,1) mode is more or less a “numerical artefact”. 
It represents the artificial first term of a series β*, 2β*, 
3β*, where βt = 2β* and βk = 3β* are the target and 
killer wave numbers linked together by βt/βk  = 2/3.  
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Figure 3- Linear, local N factors 



Figure 3 shows the linear, local N factors for the (0,1), 
(0,2) and (0,3) modes. The corresponding linear, 
nonlocal evolutions are shown in Figure 4. Let us 
recall that the linear, nonlocal results are used as 
initial conditions for the nonlinear calculations. This 
means that they need to be determined at the initial x-
station only. In the present example, however, 
nonlocal computations were continued up to the end 
of the computational domain in order to illustrate the 
influence of nonlocal (nonparallel) effects. It can be 
seen that the nonparallel effects are destabilizing: the 
nonlocal transition N factor is close to 12.  
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Figure 4- Linear, nonlocal N factors 

Twelve modes, from (0,0) to (0,11) were considered 
in the nonlinear PSE computations. The (0,1), (0,2) 
and (0,3) modes are the major modes, for which some 
initial amplitude needs to be prescribed. The initial 
amplitude of the other modes is generated by the code. 
The (0,0) mode describes the spanwise independent 
distortion of the mean flow. 
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Figure 5- Nonlinear PSE results 
with A0 = A1 = A2 = 10-5, logarithmic scale 

Figure 5 presents the chordwise evolution of the mode 
amplitude, with a vertical logarithmic scale. The 
results have been obtained with A0 =  A1 = A2 = 10-5. 
As it is usually observed for pure CF transitions, a 
nonlinear saturation takes place between x/C = 0.3 and 
x/C = 0.4, just before the computation breaks down. 
As the experimental onset of transition is located at 

x/C ≈ 0.3, this will be considered as the reference case 
without control. 
In order to simulate the effects of roughness elements, 
the initial amplitude A2 is now increased, A0 and A1 
remaining constant. The results with A2 = 10-3 are 
plotted in Figure 6. The amplitude of the target 
decreases and the numerical breakdown occurs later 
than in the uncontrolled case. This can be considered 
as a case of numerically successful transition control. 
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Figure 6- Nonlinear PSE results  
with A0 = A1 = 10-5, A2 = 10-3, logarithmic scale 

The amplitudes of the target and killer modes are 
plotted as a function of x/C with a linear scale for A2 
between 10-5 and 3 10-3. The full lines (respectively 
the dotted lines) represent the target mode 
(respectively the killer mode). For a given 
computation, the same colour is used for both 
modes. The bold lines correspond to the reference 
case, i.e. A1 = A2 = 10-5. When A2 increases: 
- the killer maximum amplitude increases; 
- the target maximum amplitude decreases; 
- for some values of A2, the end of the computation 
moves downstream.  

The conclusion is that the DTP B model in the 
conditions of the present computations could be a 
good candidate for an experimental validation of the 
concept of transition control by MSR. 
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Systematic computations: typical results 

As explained previously, systematic computations 
were carried out for three swept wings (ONERA D, 
DTP A, DTP B), see detailed results in [10]. From 
these calculations, practical rules for a successful 
(numerical) application of transition control by MSR 
were established. Two conditions related to the linear 
stability results need to be fulfilled: 

- The “natural” transition must be triggered by 
zero frequency disturbances, with N factors for the 
“target” mode around 10 at the transition onset;  

- The “killer” N factor must exhibit a maximum 
upstream of the “natural” transition location, with 
values around 6 according to the linear, local theory. 
The curves plotted in Figure 3 clearly obey these 
rules. As a consequence, the corresponding nonlinear 
calculations led to positive results with appropriate 
initial amplitudes for the target and killer modes. 
However, the numerical examples discussed below 
show that the situation is not always so favourable.     
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Figure 8- Two interactions scenarios  

 for the ONERA D airfoil : λk/λt = 2/3 (upper) 
and λk/λt = 1/2 (lower) 

The first example is related to the ONERA D airfoil. 
The sweep angle is 60°, the angle of attack -8°, and 
the chord Reynolds number Rc close to 3 106. The 
spanwise wavenumber βt of the most amplified 

stationary vortices can be extracted at transition 
location (s ≈ 0.15 m, or s/C ≈ 0.4). It can be seen in 
Figure 8 that the transition N factor for the target 
mode is close to 10. The figure also shows the linear 
N factors for two interaction scenarios, one with   
λk/λt = 2/3, the other with λk/λt = 1/2. The nonlinear 
PSE results reveal that the first scenario is suitable for 
transition control by MSR. By contrast, with the 
second scenario, the maximum N factor for the killer 
mode is too low, so that no interesting result was 
obtained from the nonlinear PSE computations.   
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Figure 9- Results for the DTP B model 
at high Reynolds number 

A common conclusion from the DTP B and 
ONERA D investigations is that the scenario λk/λt = 
2/3 is powerful for this kind of control. Unfortunately, 
this is not a general rule, because the optimum ratio 
λk/λt depends on the Reynolds number. This is 
illustrated in Figure 9, which corresponds to the 
DTP B airfoil at a chord Reynolds number equal to 
9 106, nearly 3 times the value considered in Figure 3. 
Here, transition is assumed to occur at s/C ≈ 0.06, i.e. 
at the location where the target N factor is equal to 10. 
When the scenario λk/λt = 2/3 is adopted, the N factor 
curve for the killer mode is very different from that 
found for the low Reynolds number case, see 
Figure 3. This curve increases continuously from the 
critical abscissa to the transition location, and the PSE 
computations reveal that control is not possible: as 
soon as the initial amplitude of the killer mode is 
increased, the point where the computation breaks 
down moves upstream, indicating that the killer mode 
becomes responsible for the breakdown to turbulence.  

These computations demonstrated that the wavelength 
of the killer vortices plays an important role in the 
control process. On the other side, the most interesting 
nonlinear results were obtained by assuming an initial 
amplitude of the killer modes of the order of 10-3. The 
next problem is to estimate which roughness height 
corresponds to this initial value. Direct Numerical 
Simulations help to answer this question.   



3. DIRECT NUMERICAL SIMULATIONS 
 

In order to understand how the stationary vortices 
are generated downstream of the roughness elements, 
a Direct Numerical Simulation has been carried out. It 
aims at establishing the link between the initial 
amplitude of the killer vortices (in ms-1) and the 
characteristic size of the surface imperfections (in m).  

Configuration 
The leading edge of a realistic swept wing is modelled 
as an infinite swept cylinder with a radius Rc. The 
cylinder is placed in a uniform and constant incoming 
flow with the velocity Q∞ and the sweep angle ϕ. The 
associated unit Reynolds number is about 3.3 106 m-1. 
The chordwise, wall-normal, spanwise directions are 
denoted as x, y, z, respectively. A spanwise periodic 
array of roughness elements is placed on the cylinder 
surface at the chordwise distance xr/Rc=8° from the 
attachment line, as shown in Figure 10. Thanks to the 
spanwise periodicity, only one roughness element is 
included within the computational domain. The 
spanwise center of the computational domain is fixed 
at the middle of the roughness element. 
 

 

 
 

Figure 10- Sketch of the geometrical configuration.  
 
The boundary layer along the cylinder is laminar and 
its thickness at the leading edge is denoted as δ. The 
roughness elements are parallelepipedic and their 
dimensions are denoted as (lx, h, lz) in the (x, y, z) 
directions, respectively. Four cases for the roughness 
size have been analysed, they are detailed in Table 1. 
 

 Case 1 Case 2 Case 3 Case 4
δxl  1.6 1.6 1.6 1.6 

δh  0.1 0.075 0.05 0.1 

δzl  1.6 1.6 1.6 9.6 

Table 1: List of the four considered cases. In 
the first three cases only the roughness element height 

is varied, while the fourth case corresponds to a 
roughness element with a large spanwise extent. 

 

In each case the roughness height is small enough not 
to trigger the transition to turbulence, but is larger 
than the limit of linear receptivity, i.e. the roughness 
elements generate boundary layer disturbances that 
cannot be predicted by linear models. That is why a 
Direct  Numerical Simulation of the Navier-Stokes 
equations is performed. 
 

Numerical procedure 
 The compressible Navier-Stokes equations have been 
solved with the ONERA in-house solver sAbrinA, 
which is usually dedicated to aeroacoustics issues, 
see [11]. For the present computations, the 
compressibility effects are assumed to be negligible. 
The flow is modelled as an ideal gas with a specific 
heat ratio of 1.4, a Prandtl number of 0.72. The 
dynamic viscosity is computed thanks to Sutherland’s 
law. The Navier-Stokes equations are discretized 
using high-order numerical schemes and structured 
multi-block meshes. The spatial scheme is a classical 
fourth-order accurate centered explicit finite 
difference discretization, while a compact explicit 
third-order accurate Runge-Kutta algorithm is used for 
time advancement. The grid is three-dimensional, 
structured and curvilinear. Eight subdomains are used 
and one of them corresponds to the roughness element 
location. For more details on the numerical method 
and boundary conditions, the reader is referred to 
 [12]. 
 
The computation is performed in two successive steps. 
In the first one, the Navier-Stokes equations are 
solved on the "smooth" cylinder, i.e. without the 
roughness element. In that case the eighth sub-
domain, which corresponds to the location of the 
roughness element itself, is part of the flow. The 
inviscid analytical flow field along the infinite-span 
cylinder  is imposed as initial condition. After some 
transient a steady flow is obtained, which is called the 
``base flow''.  
In the second step, the roughness element is present. 
Therefore the eighth domain is dropped and no-slip 
boundary conditions are imposed on its surface. The 
base flow is imposed as initial condition on each mesh 
point of the remaining seven sub-domains. 
The specificity of this computation is thus that the 
roughness element is meshed and that no-slip 
boundary conditions are directly imposed at its walls. 
Moreover, the surface curvature is taken into account.  
 

Analysis of the first case 
In this section, the results of the computation 
performed for the first geometrical configuration (see 
Table 1) are detailed.    

Laminar flow on the “smooth” swept  cylinder 
As explained previously, we have first to 

compute the flow around the swept cylinder when 
there is not any  roughness element on its surface. An 



example of result is shown in Figure 11, which 
provides the pressure as function of the time at the 
location x/Rc ≈ 10° , z=0 and y=δ. As expected, after 
some transient, the obtained flow is independent of 
the spanwise coordinate and is steady. This last 
observation can be emphasized: even if the obtained 
laminar base flow is unstable with respect to 
crossflow instability, the DNS does not exhibit this 
instability in the case of the perfectly smooth cylinder. 
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Figure 11-Pressure versus time on the “smooth” 

cylinder. 

Flow perturbation induced by the roughness element 
Next, the flow with a roughness element 

placed on the surface of the cylinder is computed. The 
computation starts from the base flow obtained in the 
smooth cylinder case. After a new transient, the 
signals extracted from locations downstream of the 
roughness element show that an unexpected unsteady 
perturbation takes place in the flow. This is illustrated 
by the pressure signal shown in Figure 12. This 
unsteady part is nearly harmonic with a frequency 
close to 3400 Hz. 
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Figure 12-Pressure versus time in the presence of the 

roughness element. 
 
It seems thus necessary to decompose the 
instantaneous flow field into a mean part and an 
unsteady one simply by performing an average value 
over a few periods. As the flow seems to be nearly 

harmonic this average procedure should not induce 
large numerical bias. The chordwise velocity 
component for instance is decomposed as: 

( ) ( ) ( ) ( )Φ++><= tzyxuzyxutzyxu unst ωcos,,,,,,, 0

where ω/2π corresponds to the frequency (close to 
3400 Hz) and Φ stands for a phase. Figure 13 displays 
the unsteady part of the chordwise velocity 
component as function of x and z at a constant 
distance from the wall (y ≈ 3.5h, where h is the 
roughness element height. This corresponds to about 
one third of the boundary layer thickness). A careful 
analysis of the flow field shows that the unsteady 
waves are sinusoidal in the spanwise direction with a 
2βz spanwise wavenumber, where βz = 2π/λz is the 
wavenumber associated to the spanwise extent of the 
computational domain λz. Moreover, a comparison of 
their wall-normal evolution with the eigenfunctions 
obtained by an Orr-Sommerfeld analysis proves that 
the unsteady waves captured by the DNS are unsteady 
crossflow waves of frequency 3400 Hz and of 
spanwise wavenumber 2βz  [12]. Unfortunately, the 
amplitude of these waves is rather large: a few 
percents of the external velocity. Consequently, non-
linear interaction occur between the unsteady flow 
field and the steady flow field. 
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velocity component at y ≈ 3.5h. The roughness 
element location is plotted in black solid lines.  

 
The steady flow field is plotted in Figure 14. The base 
flow has been subtracted from the total steady field to 
make the visualization of the steady perturbation 
induced by the roughness element possible. A strong 
flow deformation can be seen around the roughness 
location. Further downstream, steady oscillations 
associated to the βz spanwise wavenumber appear. 
The DNS thus confirms that an array of roughness 
elements can generate stationary vortices, which had 
been previously observed in many experiments, 
see  [1] for instance. 
The stationary vortices are amplifying in the 
chordwise direction, with a growth rate that is much 
more important than the one predicted by the linear 



stability theory (Orr-Sommerfeld theory). This 
disagreement is due to the non-linearity created by the 
unsteady flow field, which consequently drives the 
steady flow amplification. Therefore, the initial 
amplitude of the stationary waves, which can be 
extracted from the DNS results, may not be intrinsic, 
and its quantitative value must be considered as a 
rough estimate only. 
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Figure 14- Iso-values of the steady chordwise velocity 
component at y ≈ 3.5h. The roughness element 

location is plotted in black solid lines.  
 
 

Influence of the roughness size 
 The numerical procedure detailed in the 
previous section for the first case of roughness 
geometry is repeated for the three other cases 
presented in Table 1. It is important to notice that the 
base flow (i.e the flow around the smooth cylinder) is 
the same for each case. Only the roughness size 
differs from one case to another, and thus the strength 
of the crossflow waves excitation. The steady flow 
field is plotted for each case in Figures 15 (a-d). As in 
Figure 14, the base flow has been subtracted from the 
total steady flow. It must also be pointed out that the 
velocity scale is different from one figure to another.  
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Figure 15 (a).  Steady chordwise velocity in  case 1 
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Figure 15 (b).  Steady chordwise velocity in  case 2 
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Figure 15  (c).  Steady chordwise velocity in  case 3 
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Figure 15 (d) . Steady chordwise velocity in  case 4 
 
A strong flow deformation can be seen around the 
roughness location, with different features between 
the first three cases and the fourth one. Further 
downstream stationary vortices can be observed. The 
amplitude of the velocity fluctuations induced by the 
vortices is similar for cases 1, 2 and 4, whilst it is 
significantly smaller for the third case. The initial 
amplitude of the stationary vortices seems to be driven 
by the features of the flow distortion in the roughness 
element vicinity. As explained previously, the 
presence of the unwanted unsteady crossflow waves 
influences significantly the steady flow field, and thus 
the initial amplitude of the stationary vortices. 
Consequently, an accurate receptivity investigation is 
impossible for the studied configuration. Anyway, the 
results show that the obtained initial amplitude is 



close to 10-3 of the external velocity. Even if this value 
must be considered in a qualitative way only for the 
present study, it shows that the values chosen for 
initializing the amplitude of the killer vortices in the 
nonlinear PSE computations (A2) is in the correct 
range.  
 
Further computations are currently undertaken in 
E. Piot’s thesis  [13] to get rid of the unsteady 
crossflow wave and consequently to be able to 
perform a more accurate receptivity investigation. 
 

4. CONCLUSIONS 
The linear and nonlinear stability computations 

have demonstrated that two conditions need to be 
fulfilled for a successful application of the control 
system by MSR: 

- The uncontrolled transition N factor for 
stationary vortices must be large enough (around 10) 
in order to be sure that these vortices dominate the 
transition process.  

- The N factor curves for the killer mode must 
exhibit a maximum upstream of the natural transition 
location, with a value around 6.  

When these conditions are fulfilled, nonlinear 
PSE computations show that increasing the initial 
amplitude of the killer mode can delay the appearance 
of the numerical transition; in other words, the 
beginning of the nonlinear saturation and the point 
where the computation breaks down move 
downstream. Another important result is that there are 
no “good” and “bad” pressure gradients: a given 
pressure gradient can be convenient or not, depending 
on the Reynolds number.  

The determination of the roughness height 
remains a key issue. The DNS results reported in 
section 3 brought many original information 
concerning the “birth” of CF vortices in the immediate 
vicinity of a roughness array. It has been found that a 
roughness element of height h equal to 5 or 10% of 
the boundary layer thickness generates vortices with 
an initial amplitude around 10-3 Ue. This is the order 
of magnitude of the most appropriate values of A2 
determined from the nonlinear analyses. However, the 
unexpected appearance of travelling waves hides a 
part of the receptivity process and provokes premature 
nonlinear interactions which make the DNS results 
difficult to interpret.  

From the previous remarks, it is recommended to 
conduct future investigations in two ways: 
- An experimental study is required in order to 
validate or invalidate the nonlinear PSE results. The 
effects of the shape and size of the roughness 
elements also need to be investigated and compared 
with the DNS data. The DTP B model could be 
convenient for these investigations.   

-  Further DNS studies are also necessary in order to 
clarify the origin of the (parasitic?) travelling waves. 
If it can be demonstrated that these waves result from 
a numerical artefact and if it is possible to reduce 
them, then the stationary vortices will exhibit a linear 
growth downstream of the critical point. This will 
enable to establish a more precise correspondence 
between h and A2. This work is currently a part of 
E. Piot’s thesis [27].  
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