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Abstract. This paper is devoted to the hydrodynamic stability computation of a compressible and high-Reynolds flow over
a cylindrical cavity. The approach consists in determining amplified solutions of a partial derivative eigenvalue problem
pertaining to linear instability of two-dimensional basic flow using finite elements. The results are compared to former results
using classical method.
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INTRODUCTION

Several flight tests showed the occurence of a tone generated by circular vent holes on the pressure side
of a wing during approach conditions (Mach numbers ranging from 0.1 to 0.3)[1]. The french AEROCAV
project aims to study the whistle, to understand the mechanisms enhanced in this geometry, and to propose
a final approach to reduce this whistling by optimising the shape of these cavities. In order to understand
the mechanism of such phenomenon, a linear stability study can be useful to identify the resonant modes
and so to determine their role in the noise generation. This paper presents the results of the global linear
stability of a flow over a cavity. The mean flow is computed by a Large Eddy Simulation method (LES):
the mean flow is compressible and corresponds to a high-Reynolds number case. As the mean flow is
fully non-parallel, the classical local stability theory is not appropriate. We must use the method initiated
by Tatsumi [2] and developed by Theofilis: the so-called bi-global stability theory [3]. Recently, stability
studies of laminar flows have been driven on the rectangular cavity [4, 5] ; these studies were using a low
Reynolds number configurations with full compressible Navier-Stokes equations. Such fundamental studies
represent a starting point for the understanding of the cavity flow phenomena but cannot be used in the
present configuration. This paper gives an applied point of view on the cavity flow issues, and aims to deal
with practical problems.

DESCRIPTION OF THE CONFIGURATION AND MATHEMATICAL
FORMULATION

Geometry and Mean Flow

The configuration retained for this study is related to the french AEROCAV project. The cavity has a
cylindric shape, with a diameter D equal to 0.1 m, the depth W is also equal to 0.1 m. The inflow freestream
velocity is U∞ = 70 m.s−1, corresponding to an inflow Mach number of M = 0.2. The cavity diameter based
Reynolds number is about 450 000. The mean flow is obtained by the time-average field of a LES performed
by Mincu [6] with the ONERA code "Flu3M". This simulation is fully three-dimensionnal and turbulent ; it
has about 13 million mesh points with 40 points in the boundary layer. To obtain dimensionless quantities
(velocity components and time), we use the cavity depth W , the freestream velocity U∞ and finally the ratio
W/U∞. The stability studies were conducted considering the Euler equations in the compressible form for
the streamwise median plan through the cavity (see fig 2).

Perturbation equations

In the median plan, the mean flow is two-dimensionnal in the sense that the two velocity components
(ū(x,y), v̄(x,y)) are functions of x and y only. We assume that the mean density and the mean pressure



FIGURE 1. Schema of the studied configuration

are nearly constant, which is confirmed by the LES results. According to the theory of linear stability, a
systematic small perturbation is superposed to the mean flow. The perturbations are computed using an ideal
gas with a constant specific heat. Thanks to the nearly constant mean density and mean pressure, the entropy
conservation equation and the equation of mass continuity can be grouped. We consider the perturbations in
the form of normal modes: q̃(x,y, t) = q̂(x,y)exp(−iωt) with q̂(x,y) and ω complex numbers. This leads to
an eigenvalue problem via a partial derivative equation system. The linearised inviscid compressible Euler
equations system becomes : M2(−iω p̂+ ū p̂,x + v̄ p̂,y)+(û,x + v̂,y) = 0

(−iω û+ ū,xû+ ū,yv̂+ ūû,x + v̄û,y)+ p̂,x = 0
(−iω v̂+ v̄,xû+ v̄,yv̂+ ūv̂,x + v̄v̂,y)+ p̂,y = 0

(1)

with the notation f,z = ∂ f
∂ z . There are three unknowns : û, v̂, p̂, the amplification functions for the streamwise

and vertical fluctuating velocity components and for the fluctuating pressure.
On rigid boundaries, the normal velocity perturbation must vanish, this leads to physical Dirichlet

conditions. The other boundary conditions will be specified further on.

NUMERICAL METHODS

Finite element method

Usually, stability problems are solved using spectral methods in order to have a good accuracy. However,
in the cavity case, these spectral methods will need a multi-domain formulation and the geometry should be
defined once for all. Conversely, the finite element method is a good choice for solving partial differential
equations over complex geometries even if the accuracy will be not so good than the one using a spectral
method. We use the FREEFEM++ software (see http://www.freefem.org) to perform these finite element
computations. The previous system (1) is written in variationnal form and we are using a finite element
space composed of P1 piecewise linear continuous finite elements plus bubble. This element type gives
an increased degree of freedom which corresponds to the barycentric coordinates. After superposition of
element matrices, the temporal mode stability (1) is expressed as a generalized eigenvalue problem in the
form of

Aq = ωBq (2)

where A and B are matrices and q = {p̂, û, v̂} is the eigenfunction vector.

Arnoldi methods, Convergence

Computing the whole eigenmode spectrum takes too much time. The Arnoldi’s method [7] seems to be
appropriate in the present case. Actually, we are using a shift value and the algorithm tries to converge
on eigenvalues close to the shift value. The FREEFEM++ software can also perform the Arnoldi method
thanks to UMFPACK [8] (which is a sparse matrix solver) and ARPACK coupling. It is possible to build
a "pseudo-spectrum" by varying the shift values. These computations are carried out for different mesh
grids and different shift values in order to identify physical modes. Regarding the mean flow, the critical
phenomenon is the shear layer over the cavity where the strong velocity gradient triggers Kelvin-Helmholtz
instabilities [9]. These unstable modes are difficult to compute as they are concentrated in the shear layer



zone. Consequently, the mesh is tight up to an average of 35 vertices in this zone. Furthermore, we impose
the fluctuating velocity components to vanish on the non-rigid boundaries.

The difficulty of this part is to analyse each possible converged mode. So each possible eigenfunction
must be analysed. We are actually interested in unstable modes, i.e. modes with positive ωi values. The
corresponding modes must have the characteristics which could be linked to physical phenomena. These
constraints allow us to identify "physical modes", which are analysed in the following.

NUMERICAL RESULTS

Kelvin-Helmholtz modes

Figures 2 and 3 show four modes (ωr = 3.22, ωr = 5.83, ωr = 8.01, ωr = 9.77) which seem to be
quasi-independant on different mesh refinements. These modes are localised in the shear layer zone.
Everywhere else, the fluctuating velocity components are null. Therefore, these modes are the expected
Kelvin-Helmholtz modes. We define the Strouhal number as

St =
ωr

2π

FIGURE 2. Unstable Kelvin-Helmholtz modes I (left) and II (right). Iso-value of the pressure modulus perturbation
for mode I (StI = 0.51) and mode II (StI = 0.92)

FIGURE 3. Unstable Kelvin-Helmholtz modes III (left) and IV (right). Iso-value of the pressure modulus perturbation
for mode III (StIII = 1.28) and mode IV (StIV = 1.55)

The semi-empirical Rossiter’s formula predicts dominant harmonics [10]. Indeed, flow perturbations by
impacting on downstream edge excite the shear layer and a particular tuning between the flow perturbations
roundtrip and the number of vortices in the shear layer may introduce self-sustained oscillations. In our
case, we will use a Rossiter formula which is efficient for low Mach numbers, it has been established by
Block [11]:

StRossitern =
n

M(1+ 0.514
D/W )+

1
κ(D/W )

(3)



TABLE 1. Comparison between Strouhal numbers predicted by formula 3 and the
Strouhal numbers of unstable modes

MODE
I

MODE
II

MODE
III

MODE
IV

Strouhal number of global unstable mode 0.51 0.92 1.28 1.55
Strouhal number of Rossiter mode 0.51 1.02 1.53 2.04

with κ(D/w) an empirical parameter. This relationship takes into account the shear layer thickness. In
table 1, we can notice that global unstable modes I and II are almost the same as those predicted by Rossiter.
And mode IV corresponds to the mode III of Rossiter. These surprising results are independent on the
acoustic phenomena which tend to give another justification of the Rossiter formula. Indeed, the Rossiter
self-sustained oscillations seem to be conditioned by the unstable Kelvin-Helmholtz modes.

A second aspect of the study concerns the eigenfunctions themselves. Rowley and Colonius [12] have
performed several Direct Numerical Simulations for a compressible flow over a rectangular cavity. The
cavity aspect ratio was D/W = 2 (1 in the present study). They performed computations for a Mach Number
M = 0.6 (0.2 in the present study). They demonstrated that the two first Rossiter’s modes are amplified. They
have computed discrete Fourier transform for Rossiter’s second mode [10]. In the full paper version, we will
show that eigenfunctions of mode II are in good agreement with the results obtained in [12].

CONCLUSION

This study is a first analysis of global instabilities of a high Reynolds number and compressible flow over
a cylindrical cavity using linearized Euler equations. This paper shows the efficiency of a simple method
(global instability theory) on complex flow configurations (high Reynolds number, complex geometry...).
The results enable a new interpretation of the Rossiter formula, particularly, for modes I and II.
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