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Solid rocket motors exhibit undesirable thrust oscillations at the end of their firing.
These oscillations are linked to inflow pressure fluctuations induced by flow instabilities. A
biglobal linear stability analysis has confirmed the role of the parietal vortex shedding in
this phenomenon. This approach, based on a small perturbation technique, leads to a global
understanding of the thrust oscillations. Using these results, the present paper provides a
detailed analysis thanks to comparisons with reduced scale motors measurements.

Nomenclature

ωi temporal growth rate
ωr circular frequency
θ azimuthal angle
Athroat surface area of the throat
c∗ theoretical characteristic velocity of the throat flow rate
Pi stagnation pressure
r radial position
t time
x axial position
Xe length of the truncated domain

Subscripts

− vector
i imaginary part
r real part

Superscripts
∗ dimensional variable

I. Introduction

Thrust oscillations, due to inflow pressure fluctuations that exist in large solid rocket motors, are observed
and studied for several years. They have also been pointed out in reduced scale motors as demonstrated

by Prevost1 . Measurements exhibit frequency paths which characterize the pressure fluctuations. These
frequency paths are identified as instabilities. In order to understand the origin of such instabilities a
pioneer study, by G. Casalis et al2 , involving a hydrodynamic stability analysis, has demonstrated the key
role played by the parietal vortex shedding (PVS). However, this first attempt, based on a small perturbation
technique and assuming a wave-like form for the perturbation, leads to a non-consistent approach. Thanks
to recent developments3 , hydrodynamic stability calculations have been done with a consistent approach,
called the biglobal approach. Instead of assuming the perturbation as an one dimensional wave-like mode,
the perturbation is searched with a more general form. A rather complete description of this approach has
been previously given4 . Works performed by Theofilis et al5,6 have previously proved the pertinence of the
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biglobal approach using it successfully on different non-parallel flows. Other approaches, and in particular
the energy-balance method proposed by Flandro and Majdalani7,8 , have been developed in order to model
the thrust oscillations. The link between the energy-balance method and the hydrodynamic stability is
not fully understood yet, but matching the two approaches may result in a new way of characterizing the
influence of the acoustic modes in solid rocket motors.
From the results exhibited by the biglobal approach, comparisons with experimental results have been
carried out. The goal of this paper is to present a detailed analysis of the comparisons, in order to provide
an accurate description of the thrust oscillations phenomenon. Special emphasis will be given on the role of
some geometrical characteristics of the motors upon the amplitude of the pressure fluctuations.
Thus, the paper is organized as follows. The first section is dedicated to the main results issued from the
biglobal stability calculations. Then, the experimental set-ups and corresponding firings will be described.
After some comments on the comparison procedure, we will focus on the different comparisons between the
theoretical results and the experimental ones. Finally, a detailed analysis of the measured frequency paths
is given.

II. Results of the biglobal linear stability calculations

This paper is not dedicated to the biglobal linear stability theory itself. This later is detailed in a recently
published paper3 and first comparisons with solid propellant motors4 already proved the pertinence of this
approach. Thus only the main points of the theory will be recalled in the following.
The biglobal linear stability analysis is based on a small perturbation technique. It means that a small
perturbation of an initially fixed mean flow is searched. The considered mean flow is the well-known Taylor-
Culick flow9,3 , that models a laminar axisymmetric flow inside a purely cylindrical solid rocket motor. This
flow depends on two parameters : the radius R and the injection velocity Vinj . Using these two parameters,

it is easy to define dimensionless variables x =
x∗

R
(x stands for the position vector in cylindrical coordinates

(x, r, θ)) and u = u∗

Vinj
(u stands for the velocity vector (ux, ur, uθ)). As this mean flow is non parallel (the

mean velocity depends strongly on x and r), the perturbation q̂ is assumed to be axisymmetric and can be
written with the following form :

q̂ = q(x, r) exp(−iωt) ω ∈ C (1)

This modal form is superimposed to the mean flow and injected into the Navier-Stokes equations
written for an incompressible one-phase fluid. The only remaining parameter of the obtained system of

equations is the Reynolds number Re =
RVinj

ν
. After linearization, the system is discretized on a domain

(x, r) ∈ [0, Xe]× [0, 1], leading to a generalized eigenvalue problem :

A X = ω B X (2)

where A and B are matrices corresponding to the used discretization method. For a given value of the
Reynolds number Re, solving the stability problem means finding all the eigenvalues ω, each one being
associated with an eigenvector X which stands for an arrangement of the discretized values of the spatial
perturbation field q(x, r). From the previous published papers3,4 , one can sum up the results into five main
conclusions :

• the whole set of eigenvalues ω, called spectrum, is discrete

• all the eigenvalues ω have a negative imaginary part ωi

• for ωr sufficiently large a, all the eigenfunctions q(x, r) are exponentially amplified in the streamwise
direction x

• the results weakly depend on the Reynolds number Re

• ωr does not depend on the length Xe but ωi does
aIn practice we can consider that the lower limit value is ωr = 30
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The first and second points imply that there exists only a discrete set of circular frequencies ωr which are
able to emerge in the mean flow and that these circular frequencies stand for temporally stable modes, ωi

being the temporal growth rate of the modal form (1). But the third point conversely claims that each
mode (ωr being sufficiently large) is exponentially amplified in the streamwise direction x. Thus there is a
competition between the temporal decrease and the spatial amplification. Finally, the last two points give
some information about the influence of Re and Xe. In particular, we can consider that Xe is a passive
parameter for the circular frequencies ωr but it rules the temporal damping : the larger Xe, the smaller |ωi|.

III. Detailed analysis of the measurements

A. Set-ups description

Figure 1. Sketches of the different firings
LPαtβ

The set-ups presented in this paper belong to three families called
LP9, LP10 and LP6. An accurate description has been given by
Prevost10 . These set-ups are subscale motors of the P230 booster
of the European launcher Ariane 5, working with solid propellant.
It means that they have an aspect ratio of the same order of the
P230 one. They are equipped with pressure sensors at the head-
end and near the throat. From these signals, we can have access
thus to the time evolution of the pressure fluctuations in the two
locations.
Each set-up of the three families corresponds to a specific firing,
different firings have been carried out. One can identified a firing
by its number β and the name of its family LPα. Thus, in all the
following, a firing will be written as LPαtβ (“t” stands for the
French translation of firing : “tir”).
Let us begin with the simplest motor : LP9. All the firings be-
longing to the LP9 family have a cylindrical load, meaning that
each propellant grain is purely cylindrical. The LP9t10 is made
of a single propellant grain. One can expect that at each time the
mean flow generated by the combustion of the propellant grain
will be close to the Taylor-Culick one, and so the LP9t10 will
stand for the reference. Starting from the LP9t10 we increase the
complexity of the load by introducing, one by one, some modifica-
tions that exist in actual solid rocket motors. Table 1 presents the
different firings with their modifications compared to the reference
LP9t10. In addition to this table, figure 1 provides sketches of the
different firings analyzed in this paper. The successive modifica-
tions, mentioned in table 1, are the following ones : the presence of
an intersegment (inter.) between the two main propellant grains,
the existence of a head-end cavity (head. cav.), a modification
of the aspect ratio (asp. ratio) of the motor, an increase of the
throat diameter (throat D), the arising of an aft-end cavity (aft.
cav.) once the propellant is burned in the recess zone at the aft-
end, the tapered (tap.) shape of the propellant grains and finally
a scale effect (scale). Thus, we will move on from the simple case
of firing LP9t10 to firing LP6t27 whose configuration is very close
to the P230 one (except the scale).

B. Measurements analysis

1. General purpose

As mentioned before, we have access to two pressure signals. The
pressure fluctuations are responsible of the thrust oscillations.
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inter. head. cav asp. ratio throat D aft. cav tap. scale

LP9t10

LP9t11 ×
LP9t12 × ×
LP9t15 × × ×
LP9t22 × × × ×
LP9t24 × × × × ×
LP10t5 × × × × × ×
LP6t27 × × × × × × ×

Table 1. Presence or not of influential elements in the firings LPαtβ.

The main characteristic of their time evolution is the existence of frequency paths. As it is a time-frequency
phenomenon it is necessary to use a Short-Time Fourier Transform (STFT) in order to get the time evolution
of the pressure fluctuations frequencies. With proper parameters (such as the number of points used for the
Fourier transform), one gets a frequency resolution less than 2 Hz and a time resolution around 0.02 s for
LP9 and LP10 firings. Before dealing with all the results of the different STFT performed, it is important to
note that there is no major difference between the results of the STFT coming from the head-end pressure
signal and from the one located near the throat. In both cases, the results exhibit exactly the same fre-
quency paths. But, the results of the aft-end pressure signal are more “noisy”. It means that there is more
amplitude on all the frequencies, especially during the first part of the firing. This can be partly explained
by the existence of a turbulent zone in the downstream part of the motor. In cold gaz facilities11,12 , it
has been shown that the transition to turbulence occurs at a location which corresponds to a more or less
constant dimensionless value : xT = x∗T /R = cte. If one extrapolates this result to live motor, one can see
that, as R increases, the turbulent zone will be pushed forward during the firing. Thus, at the beginning of
the firing the turbulent zone is spread over a large region of the motor and then this zone is continuously
diminishing. This could explain the observed “noise” on the aft-end pressure signal at the beginning of the
firing. But, as far as the authors know, there is no evidence of such a behavior in a real motor. Even if it
looks like a reasonable explanation, it has to be confirmed.
Now, as there is no difference between the frequency paths exhibited by the pressure signals at the head-end
and at the aft-end, one performed all the STFT for all the firings on the head-end pressure signals. The
results are reported in figures 2(a) and 2(b). They show the results of the different STFT by plotting iso-
contours of amplitudes in the time-frequency plane. For the sake of clarity, the amplitudes are normalized
using the infinity norm. So, the maximum amplitude reached in each subfigure is equal to unity. When
the frequency path phenomenon is very amplified it is isolated from the rest and appears almost alone.
Conversely, when there is a low average level of amplitude, the contours are spread over a large part of the
figure, as it the case for firing LP9t10 and LP9t11.
For years, the acoustic modes are believed to play an important role in the merging of the frequency paths.
The main reason is that the frequency paths are always located around the different acoustic modes of the
motors. Thus, each subfigure presents the STFT results of the considered firing around the first acoustic
mode, where the maximum amplitude level is reached. There are also some frequency paths arising around
the second and third acoustic modes but usually with less amplitude. For higher acoustic modes, the energy
is so weak that is hard to say that there also exists some frequency paths.

2. LP9t10

The first analyzed case is the simple configuration of firing LP9t10. The measured frequencies show no
particular organization. There is no explicit frequency paths. However it has to be remained that the
pressure fluctuation average amplitude is very low.
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(a) Firings LP9t10, LP9t11, LP9t12 and LP9t15

f(H
z)

LP9t22

1 2 3 4
500

600

700

800

900

0.4

0.5

0.6

0.7

0.8

f(H
z)

LP9t24

1 2 3 4
500

600

700

800

900

0.4

0.5

0.6

0.7

0.8

f(H
z)

LP10t5

1 2 3 4
500

600

700

800

900

0.4

0.5

0.6

0.7

0.8

t(s)

f(H
z)

LP6t27

2 4 6 8 10
200

250

300

350

400

0.4

0.5

0.6

0.7

0.8

(b) Firings LP9t22, LP9t24, LP10t5 and LP6t27

Figure 2. STFT of all the analyzed firings. The measured pressure fluctuations are represented by iso-value
contours.

3. LP9t11

It has been shown by Prevost et al.10 that the presence of an intersegment between the propellant grains
increases the level of the fluctuations. In fact, the STFT of the pressure signal of firing LP9t11 exhibits a
frequency organization. One can clearly see a long frequency path surrounded by short ones.

4. LP9t12

Then a head-end cavity is added, what makes the fluctuations amplitude increase. The results for firing
LP9t12 exhibit two frequency paths. Once again one of them is more important.
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5. LP9t15

For the first three firings the average frequency around which the frequency paths occur is about 850 Hz.
When changing the aspect ratio of the motor, see LP9t15 firing results, this average frequency moves about
700 Hz. In all cases, calculations show that this average frequency corresponds to the first longitudinal
acoustic mode. And so, increasing the motor length by changing the aspect ratio, makes this frequency
decrease as it is observed in the experiments. One can also note that the amplitudes of the fluctuations are
increased for firing LP9t15, resulting in the merging of several explicit frequency paths. Moreover, it has to
be pointed out that some frequency paths can coexist. At a given time, several frequency paths are observed.

6. LP9t22

The next analyzed firing is the LP9t22 one. Here, the increase of the throat diameter implies a drop of the
total pressure all along the motor. The main consequence of this modification is the occurrence of paths
with a lower amplification level. However, some frequency paths can be observed.

7. LP9t24

To conclude the analysis of firings having cylindrical propellant grains, the LP9t24 is analyzed. In addition
to all the previously presented modifications, an aft-end cavity is added. This cavity is not really added
from the very beginning of the firing, but is a consequence of the burning of the last part of the downstream
propellant grain. Because of the integrated nozzle, the propellant grain must have a recess, and thus this
part will be rapidly burned. Thus, an aft-end cavity appears. In the LP9t24 case, this arises at t = 2 s. On
figure 2(b), one can see that at this time a short particular frequency path occurs. After, some frequency
paths are observed.

8. LP10t5

The last two cases are firings LP10t5 and LP6t27 for which tapered propellant grains are used. Apart from
the end of firing LP10t5, where a special shape for the last frequency path is observed, there is no significant
difference compared to the previous cases. This shape is due to the so-called hump effect, which implies
an increase of the combustion velocity when the thickness of the propellant grain is very thin. For conical
propellant grain this arises during a relatively long time at the end of the firing, because of the regression of
the propellant grains. One can observe this phenomenon for all firings which have conical grains10 .

9. LP6t27

Finally, the last presented firing LP6t27, enables us to give a general conclusion on scale effects. All the
quantities have been proportionally increased. In particular, the amplified frequency range has been modified.
But the results exhibit the same frequential behavior. Apart from a pure scale effect, there is no significant
modification induced.

IV. Comparisons theory-experiments

A. Equivalent Taylor-Culick flow construction

Before explaining how the comparisons are performed, we have to face the problem of unsteadiness. Because
of the combustion process which makes the geometry of the propellant grains evolve during the firing, the
flow inside a LPαtβ firing is unsteady. However, the characteristic frequency of the time evolution of the
flow is low compared to the pressure fluctuations one3 . Consequently, the perturbations are assumed to be
independent of the flow unsteadiness. At each time, the pressure fluctuations are generated by a flow which
can be assumed steady.
Now that we have presented the measurements of the different firings, the idea is to compare them to the
theoretical results. But the main difficulty is that the mean flow used by the linear stability code is restricted
(up to now) to the analytical Taylor-Culick flow. So, it is necessary to build an Equivalent Taylor-Culick
Flow (ETF). We have thus to determine the only two parameters of such a flow : R and Vinj , whose values
are independent of x. Generally speaking, a LPαtβ does not satisfy these requirements. This stage, called
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construction of an ETF, is the core of this section. Once known the parameters R and Vinj , it will be possible
to turn the dimensionless theoretical results into dimensional ones.
As the flow is assumed steady, we only need to have access to the two parameters R and Vinj of the mean
flow at each time. Except in the LP9t10 case, the flow inside a motor is different from the one generated
by fixed values of a radius and an injection velocity. To construct the ETF, we use the results of a 1D
regression code called PERSE. It has been developed by J.C. Godon at ONERA Le Fauga-Mauzac. Using
the initial geometry and the propellant properties, this code provides the time evolution of thermodynamical
quantities during a firing. Thanks to the different given values, it is possible to build a radius R and an
injection velocity Vinj . We will now describe the procedure.

1. Radius R

For the simple case of firing LP9t10, it is obviously easy to build R. In fact, the PERSE code provides
the diameter of the flow for each x, noted Dperse(x), which is a constant value all along the motor. But,
generally speaking R is a function of x. So it is necessary to perform a spatial average along the burning
length L :

R =
1
L

∫ L

0

Dperse(x)
2

dx (3)

For conical propellant grains, the angle being small, it appears reasonable to use (3) and to reduce the
effect of tapered grains to the injection velocity (increasing the radius makes the flow slows down which
implies a decrease of the injection velocity). If there is an intersegment, as in the LP9t11, there is a part
without propellant, the size of which increases during the firing (the propellant burns from its lateral faces).
However, this part remains short compared to the length of the propellant grains. To take this into account,
we use formula (3) on each propellant grain. It is also possible that there exists a head-end cavity. Its
presence will affect the injection velocity of the ETF because of the induced total pressure drop. But its
effect does not have to be integrated into the radius of an ETF. The same is true for aft-end cavities. Finally,
the construction of R is easy and is based on a spatial average along the burning surfaces (3).

2. Injection velocity Vinj

Contrary to the construction of the radius R, getting a relevant injection velocity is delicate. There are
many ways of calculating an injection velocity. Let’s consider two examples. The PERSE code provides the
combustion velocity Vc at different locations x. The local injection velocity is then deduced from it using the
mass conservation : ρpropellantVc = ρgazVinj . But if one considers this injection velocity, one forgets the flow
rate injected by intersegments. Thus, the ETF would have a lower flow rate than the considered flow (given
by the PERSE code). This first example leads us to the second one which basic idea is the conservation of
the flow rate. The PERSE code estimates the flow rate at the throat by :

Qthroat =
PiAthroat

c∗
(4)

One can then deduce the injection velocity of an ETF thanks to this flow rate :

Vinj =
Qthroat

2πρRL
(5)

with R and L the radius and the length of the ETF described above. Thus, we have built an ETF that
conserves the flow rate at a given distance L. But, the theoretical circular frequencies ωr coming from the
stability theory are not depending on the length on which the calculation is performed. The notion of flow
rate at a distance L is not relevant for the Taylor-Culick flow. The important point is the spatial evolution
of the flow rate, because it is linked to the injection velocity. The flow rate of the Taylor-Culick flow passing
through a section x = cte is a linear function of x. The slope is directly linked to the injection velocity. This
leads to the final choice for the calculation of the ETF injection velocity. The PERSE code gives the surfacic
flow rate at different locations x. From these values, one estimates the injection velocity thanks to :

πR2Qperse(x) = 2πRρVinjx (6)

More precisely, we calculate the slope Qperse/x of the flow rate along each burning surface and take the
average value. The ETF injection velocity is deduced from it using (6).
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In the LP9t10 case the three ways of calculating the injection velocity give the same results. But for more
complicated geometries, only the third way based on the slope of the flow rate answers the requirements
of an ETF. The authors want to insist on the fact that this is not the unique way of finding the injection
velocity of an ETF.

B. Comparisons

1. Frequency paths

Finally, at each value of the time during the firing, we have built an ETF by determining a radius R(t) and an
injection velocity Vinj(t). Any LPαtβ has its own ETF, and we only have to perform the stability calculation
for each Reynolds number Re corresponding to each ETF. The problem is that the Reynolds number is based
on R and Vinj which are functions of the time. But the range in which the Reynolds number evolves during
each firing is sufficiently small so that we can consider that the stability results are not significantly influenced
by the evolution of Re, see section II. We just have to perform a unique calculation for an average value of
the Reynolds number. Moreover, it appears that the different ranges of Reynolds numbers for all the firings
are more or less identical. Thus we perform only one stability calculation at Re = 6500 and use the results
for all firings. Some circular frequencies (those which are reported in figures 3(a) and 3(b)) are given in
table 2.

49.007 53.273 57.920 63.072 68.911 75.710 83.504 94.518 108.210

Table 2. Values of the circular frequencies ωr used for the comparisons, Re = 6500

Once known, the circular frequencies are turned into dimensional frequencies with the use of the following
formula :

f(t) =
Vinj(t)
2πR(t)

ωr (7)

with R(t) and Vinj(t) determined by (3) and (6). For a given stability mode ωr one obtains a time evolution
for its corresponding frequency. Thus, a discrete set of circular frequencies provides a modes network. Each
mode of this network has a frequency which evolves during the firing, as frequency paths do.
On figures 3(a) and 3(b), the networks are drawn as dashed lines. The comparisons show a very good agree-
ment. It has to be reminded that the theoretical network is calculated independently of the measurements.

2. Amplitudes

Up to now, the comparisons concerned frequencies, the theoretical circular frequencies ωr were compared to
the measurements. It remains to compare the temporal growth rate ωi. As the frequency paths arise around
the longitudinal acoustic modes of the motor, filtering the pressure signal around the first acoustic mode,
allows to compare the measured decrease with the predicted one. For example, we focus on the LP9t15
and LP9t24 firings which exhibit isolated frequency paths. In fact, in order to make relevant comparisons
the modes have to be isolated, so that the measured decrease is associated with a unique mode. The main
difficulty is that the dimensionless length Xe of the motors is changing during the decrease phase. As written
above, see section II, ωi is depending on Xe. However, for each mode, one can consider an average value for
Xe as the range in which it evolves is very small. Once the calculation is made with the chosen values of Xe

and Re, the dimensional temporal decrease of the amplitude A is evaluated thanks to the following formula :

A = A0exp

(∫ t

tinit

Vinj(u)
R(u)

ωidu

)
(8)

where tinit is the initial time at which the decrease starts and A0 a constant standing for the initial am-
plitude (for linear problems, the amplitude A is always function of an initial constant A0). The results are
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(a) Firings LP9t10, LP9t11, LP9t12 and LP9t15
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Figure 3. STFT of all the analyzed firings. The time evolutions of the theoretical modes are drawn as dashed
lines, whereas the measured pressure fluctuations are represented by iso-value contours.

shown on figures 4(a) and 4(b). Once again the agreement is very good. However it has to be moderated.
The values of Xe when the frequency paths arise are all greater than 15. We have already assumed, by
extrapolating cold-gas results11,12 , that the transition is located at xT = cte. This value xT is around 12
in cold-gas facilities. Even if extrapolating the cold-gas results to live motors is questionable, it seems that
for large value of x, in particular greater than 15, the flow may not be laminar but turbulent. If so, the
linear stability theory can not be applied for such large values of Xe, the main flow being different from the
Taylor-Culick one. Finally, it is not pertinent to give credit to the good obtained agreement in terms of
values. Nevertheless, the measured decreases exhibit clearly an exponential evolution which is coherent with
the theory. It has to be noticed that all the restrictions concerning Xe and the calculation of ωi do not exist
for the calculation of ωr.
From all these comparisons, in terms of frequencies (ωr) and in terms of temporal damping (ωi), we propose
an interpretation of the thrust oscillations occurrence.
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Figure 4. Comparisons of the measured decrease of frequency paths with stability theory predictions.

C. Interpretation

The theoretical networks match the measurements 3(a), 3(b). It means that in all the analyzed firings the
frequency paths result from the same phenomenon. The presented linear stability theory shows that this
phenomenon is the merging of intrinsic instabilities. The flow generated by the combustion of a propellant
grain generates its own instabilities. So, the observed frequency paths, in all the firings, hold their origin in
the primary configuration of firing LP9t10. However, the low level of amplitude reached in this case makes
it hard to see explicit frequency paths.
For firings LP9t11 and LP9t12, the measurements exhibit a long frequency path. In both cases, the presence
of an intersegment may be at the origin of this behaviour. Because of that, the theoretical networks do not
match exactly these particular frequency paths. In fact, as the propellant grains burn from its lateral faces,
the intersegment size increases and so the frequency associated with the induced vortex shedding does not
have to follow the ratio Vinj/R. However, these firings also exhibit short frequency paths which evolutions
are in agreement with the predictions.
For firings LP9t15 and LP9t22, the coexistence of several frequency paths give credits to the biglobal ap-
proach results which provide a set of circular frequencies. Thus, the observed frequency paths can not be
due to a unique mode which would have jumped from a path to an other one.
The LP9t24 firing is interesting because of the merging of its aft-end cavity. As mentioned before, this
implies the occurrence of a special frequency path with a singular shape. When the recess zone is fully
burned, there is a small pressure drop. Thus, the calculated ETF injection velocity Vinj increases at this
time, around t = 2 s. Consequently, the theoretical network takes into account the merging of the aft-end
cavity and matches perfectly the evolution of the frequency paths. The measured frequency paths follow
exactly the evolution of the ratio Vinj/R as long as they are linked to intrinsic instabilities (and not to an
intersegment).
Finally, the last two cases LP10t5 and LP6t27 confirm the proposed interpretation. However, one can note a
bad prediction near the end of the firings. As explained before, at the end of the firing the hump effect makes
the injection velocity increase. Unfortunately, the PERSE code is unable to provide the precise increase of
the injection velocity. Thus, the theoretical network is not following the measurements at the end of these
firings. Nevertheless, the time at which this increase arises is well predicted.
The main interpretation resulting from these comparisons 3(a) 3(b) is that in all the firings the observed
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frequency paths are the occurrence of intrinsic instabilities. These instabilities are well predicted by the
biglobal approach.
Even if the comparisons give a good agreement, some points remain unclear. On one hand, the theoretical
modes are temporally stable but are exponentially growing in the streamwise direction x. Thus, they need
to be excited in order to merge. On the other hand, the experiments show frequency paths arising around
the acoustic modes, and in particular around the first one. It seems reasonable to believe in an interaction
between the intrinsic instabilities of the flow and the acoustic modes. When a theoretical mode comes close
to an acoustic mode (actually, the first one in figures 3(a) and 3(b)) it is amplified. Then its time evolution
moves its frequency away from the acoustic one. But, during that time the following mode has arrived in
the vicinity of the acoustic mode. Consequently, a frequency paths phenomenon is observed, which explains
the possible coexistence of several modes.
Once the modes have been amplified, they have to decrease exponentially, as claimed by the linear stability
analysis. Figures 4(a) and 4(b) show that the measurements follow the predictions. These good agreements
confirm the possible interaction between the acoustic modes and the theoretical ones. Future developments
may bring new elements concerning this possible interaction.
To conclude the interpretation of the thrust oscillations phenomenon, a last point has to be analyzed. On
one hand, the measurements come from the head-end pressure signal. On the other hand, the stability modes
are exponentially growing in the streamwise direction x and so they have a negligible amplitude at the head-
end. The resulting question of these two conflicting informations is to know what is really measured at the
head-end. It is well-known that a fluctuation passing through a sonic throat emits a reflected pressure wave
which conserves the fluctuation frequency. Consequently, the frequency paths measured at the head-end are
the traces of the amplified stability modes which have passed through the throat.

V. Summary

In the present paper, a series of subscale motors measurements has been investigated. From the simple
configuration of firing LP9t10 to the P230-like configuration of firing LP6t27, all the motors exhibit the
same phenomenon characterized by frequency paths. Thus, the existence of intrinsic instabilities of the main
flow has been pointed out. A confirmation is given by the linear stability theory. In fact, the results of
this approach provide a discrete set of circular frequencies ωr. In order to make the comparisons with the
experiments, it has been necessary to build the radius R and the injection velocity Vinj of an equivalent
Taylor-Culick flow (ETF). Once the set of ωr has been turned into dimensional frequencies, the comparisons
give a very good agreement in all cases. Moreover, some little differences, for example for firing LP9t11, show
the role of the intersegment. Now that the frequency paths have been identified as intrinsic instabilities of
the main flow, it remains to explain their merging. The linear stability results provide information, such as
the temporally stable nature of the stability modes, which help to understand the global mechanism of the
thrust oscillations. The measurements show that the frequency paths arise around the acoustic modes. Thus,
a coupling mechanism is believed to exist between these acoustic modes and the stability ones. After they
have been amplified, the modes are exponentially decreasing. Consequently, the frequency path phenomenon
appears to be a succession of modes, amplified and then decreasing. In this analysis, the acoustic modes are
only exciting sources for stability modes, they are not at the core of the thrust oscillations.
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