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Laminar-turbulent transition remains a critical issue in a number of cases, including drag reduction, performance

prediction of high-lift systems, improved accuracy in general computational fluid dynamics, and reduction of

computation cycles for development of optimization tools. Transition delay remains one of the most promising

technologies for reducing air transport energy consumption, throughnatural or hybrid laminarflowcontrol. Theuse

of linear stability theory, either local or nonlocal, remains rather demanding in terms of knowledge and user

interaction. Hence, a demand exists for simplified, robust, and accurate transition prediction tools to be inserted into

general flow solvers, of boundary-layer or Reynolds-averaged Navier–Stokes types. The problem can be solved by

developing transition criteria or databasemethods. In this last case, characteristics of an actualfloware derived from

known solutions of model flows. ONERA, the French Aerospace Laboratory, has long been involved in the

development of such methods, and the present paper aims at providing a comprehensive view of the tools developed

in the second category, applicable from low-speed two-dimensional to transonic three-dimensional flows, and even to

three-dimensional supersonic flows.

Nomenclature

F = reduced frequency
f = frequency
Hi = incompressible shape factor
Pi = characteristic parameter for the crossflow

models
Rk = Reynolds number based on length k
Tw = wall temperature
Ue,We, Te = velocity components and temperature at the

boundary-layer edge
Ui = velocity at the location yi of the inflection point
u, w, T = velocity and temperature components of the

boundary-layer profile
Vg, ’g = modulus and direction of the group velocity
�, � = complex, reduced wave numbers (�� ���1).

Their real parts are the components of the wave
vector k.

�� = crossflow wave number. As �i is usually forced
to zero, �� represents the real part.

�1 = displacement thickness
� = angle between the local x direction and the

external velocity vector
�1 = momentum thickness
�� = wavelength of the instability

�� � 2��1=
���������������������
��2r � �2

r�
p

� = kinematic viscosity
� = density
	 = amplification rate
’ = angle between the wave vector and the local

x direction
’w = wing sweep angle
 = angle between the wave vector and the local

external velocity vector
!r = reduced pulsation

I. Introduction

AUTOMATIC and robust laminar-turbulent transition prediction
tools are still in demand for improving accuracy of flow

computation or development of optimization tools. A number of
models have been developed at ONERA, and have been combined
into a fairly complete prediction tool which may be inserted into
boundary layers or Reynolds-averaged Navier–Stokes (RANS)
codes. The aim of the present paper is to provide a comprehensive
view of these models, including their use as transition prediction
tools inside the 3-D boundary-layer code 3C3D. Selected examples
will demonstrate the range of applications by providing comparisons
to exact results of linear stability (LST). Ways to implement the
database method inside a RANS code will also be discussed,
although this remains to be accomplished. Because this paper deals
with model presentation and validation, examples will compare N-
factor curves obtained using the database and exact LST, andwill not
discuss practical applications involving method calibration, specific
data preparation, and statistical analysis of the results. This would
grant a separate paper.

The traditional approach for transition prediction is based on the
linear stability theory, either local or nonlocal. The addition of the
second-order terms curvature and nonparallelism in the nonlocal
approach does not significantly improve correlation of computation
to experimental results. Therefore, local theory remains widely used
for practical applications.

Whereas stability analysis describes how small, preexisting
perturbations will grow in the boundary layer through a normalmode
response, the eN method [1,2] correlates an amplitude level with the
beginning of turbulence. Here, N � log�A=Ao�, where A=Ao is the
amplitude ratio between the current location and a reference,
upstream one. The two most common strategies, envelope and
NCF=NTS, will be discussed later.
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Exact stability calculations are rather demanding in terms of user
interaction (no fully automatic code yet) and require a precise
description of the boundary layer, imposing conditions on the mesh
definition (at least about 40 points in the boundary layer) and on the
numerical scheme (low dissipation) in case of a RANS approach.
Adequate quality of the boundary-layer profiles may also be ensured
using a boundary-layer code. Two separate questions arise: first,
the development of simplified stability methods, and second, their
coupling to RANS codes.

Concerning the first point, a number of contributions have been
made (see [3–12]) that generally fall into the database approach,
where solution for an actual boundary-layer profile is obtained from
the knowledge of the precomputed stability solutions for a family of
profiles, typically of a self-similar family like the Falkner–Skan
one in 2-D. The procedure then intends to predict the stability
characteristics of actual (nonsimilar) profiles from those of themodel
profiles. Various procedures and models have been developed that
fall into three categories: lookup tables [3,5,12], analytical models
[7,10], and neural networks [8,9]. In the two first cases, the stability
characteristics of a given profile will be determined using an
interpolation table or some analytical functions of selected param-
eters, and in the last case a neural network will provide the desired
parameters after a specific training of the network.

The range explored by the family of similar profiles may vary
depending on the applications. Because of his interest with inter-
active boundary layers, Drela [12] introduced in his database 2-D
profiles with separation. Other contributors concentrated on attached
flows, in relation to direct mode boundary-layer solvers considering
configuration without separation. Most published models are re-
stricted to Tollmien–Schlichting (TS) instabilities, with the excep-
tion of Fuller et al. [8], Crouch et al. [9], and Langlois et al. [11]. In
the first, neural network approach, model parameters include cross-
flow displacement thickness Reynolds number and a six point
sampling of both longitudinal and crossflow velocity profiles.
Predicted N factors are within 1N-factor count from local stability
theory, with the best results in the case of pure crossflow. Langlois
useswmax as the crossflow parameter together with a specific similar
solution for 3-D compressible boundary layers. Difficulties appar-
ently stem from the limitation of this family of similar solutions to
represent actual profiles computed near an attachment line. In the
case of ONERA [3,4], the self-similar Falkner–Skan family was con-
sidered for the development of a model for Tollmien—Schlichting
instabilities, whereas models for crossflow modes [7,10] were based
on typical profiles obtained downstream of the attachment line for a
series of low-speed and transonic realistic swept wing flow cases. A
similar model was developed for TS instabilities by Stock and
Degenhart [5]. In the case of ONERA, three separate models were
developed dealing with longitudinal (or TS) instabilities, traveling
crossflow (or CF) instabilities, and stationary crossflow modes,
which we call CF0, respectively.

Concerning the coupling of stability-based methods to RANS
codes, several approaches have been explored. ONERA [13]
introduced into the elsA code transition criteria for longitudinal and
crossflow instabilities. These criteria were developed from results of
linear stability and transition correlations. Examples were presented
in [14] in the context of high-lift flows. The German Aerospace
Center (DLR) [15], the Spanish National Institute for Aerospace
Technology (INTA) [16], and others have developed, for wing sur-
faces, an automatic coupling to a boundary-layer code inside which
databasemethods are used for transition prediction.Apresentation of
European activities in this field was recently published (see [17]). As
there is no example of automatic, internal coupling of a RANS code
with a stability approach capable of using directly theRANSvelocity
profiles, there is still room for much progress.

II. Linear Stability and the Solution Form

Consider the swept wing depicted in Fig. 1, with sweep angle ’w.
A local wing coordinate system is defined taking x as the normal to
the leading edge, y the normal to thewall, and z in spanwise direction.
The velocity components of the mean flow are U, W in x and z

directions. The angle between x and xc is �, with xc the tangent to the
external streamline at a point.

In the frame of local stability theory, derivatives@G=@x and @G=@z
whereG�U,W are eliminated from the formulation, that is, forced
to zero. The linear growth of small perturbations, added to the base
flow, is considered using stability theory. In the context of spatial
theory, solutions are written in the form g�x; t� � ĝ�y�ei��x��z�!rt�
where !r � 2�f�1

Ue
, �1 �

R
�1 � U�y�

Ue
�dy, and g is any fluctuating

quantity.
Real parts of the wave numbers define the wave vector k, see

Fig. 2, at angle ’ from the x direction, and  from the local velocity
direction:’� tan�1��r=�r�,’�  � �. Given these definitions, the
LST for a 2-D incompressible flow is the well-known Orr—
Sommerfeld equation, of fourth order, whereas for 3-D compressible
flow a sixth-order system is obtained [18]. In 3-D flow, the
incompressible equation is

bv0000 � 2��2 � �2�v00 � ��2 � �2�2vc=Rl � ib��U� �W � !��v00

� ��2 � �2�v� � ��U00 � �W 00�vc � 0@

with homogeneous boundary conditions on the vertical velocity
perturbation v and v0. Here, the primes denote derivatives with

respect to the y coordinate, andRl � �Uel

e

is a Reynolds number based

on a reference length l. Because boundary conditions are homo-
geneous, this is an eigenvalue problem for which solutions only exist
for particular combinations of (�, �, !), referred to as a dispersion
relation. Because there are more unknowns than equations, param-
eters need to be imposed before solving the equations. Typically, (�,
!) or ( , !) are imposed, and � is obtained as an eigenvalue of the
system. The growth rate of solutions is then given by the imaginary
part��i � 	, and theN factor is obtained by integrating this growth
rate.

Several methods exist, referred to as integration strategies. A
complete discussion (see [19,20]) is outside the scope of this work. In
the present context two approaches are considered, the envelope
method and the two N-factor methods NTS=NCF, with the following
definitions:

The envelope N factor is obtained by integrating the largest
amplification rate,

Nenv �max
f
�
Z
x

xo

max
 
�	� dx�

where xo is the critical point in which 	 becomes positive. The
inner maximization may be defined over  , �� � �r=�1, or ��. The

Fig. 1 Wing geometry and coordinates.

Fig. 2 Geometrical definitions.
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longitudinal N-factor is defined by integrating �	�j �0, considering
waves with wave vectors parallel to the outside velocity

NTS �max
f
�
Z
x

xo

�	�j �0 dx�

This definition may be extended to consider longitudinal oblique
waves, with

Nenv �max
f
�
Z
x

xo

max
 < max

�	� dx�

where  max lies in the range 60–80 deg. The envelope of envelope
crossflow N-factor is obtained by evaluating the envelope over
various frequencies and either the wavelength or spanwise wave
number

NCF �max
f
�max
��CF

Z
x

xo

�	j���ct� dx�

NCF may be strictly based on stationary modes (f� 0),
suppressing the outer maximization, or in a concurrent definition
may include traveling waves (f > 0). NTS and NCF may also be
computed based on incompressible stability equations. Whatever
the definitions used, each method needs to be calibrated using some
experimental database.

As the envelopemethodwas themost commonly used at ONERA,
the first database developments were restricted to this approach. An
extension to stationary modes and a NTS=NCF method were later
added with modified definitions for NCF and NCF0, as follows:

NCF �max
f
�
Z
x

xo

max
��CF
�	� dx�

and

NCF0 �
Z
x

xo

max
��
�	jf�0� dx

Themaximization is nowmoved under the integral, corresponding to
specialized envelopes. The impact of these definitions is visible
in Figs. 3 and 4 , obtained for a low-speed (80 m=s) swept
(’w � 50 deg) ONERA-D profile of 0.3 m chord, at �1 deg
incidence. The database NTS can be considered equivalent to the
exact stability constant  � 0 N-factor, and the stationary database
NCF0 can be considered equivalent to the zero-frequency envelope
calculation (because only crossflow modes exist at zero frequency),
as can be seen in Fig. 3. Figure 4 illustrates the different ways to
estimate NCF and NCF0 for the same low-speed case. It can be seen
that, because of the integration method, the zero-frequency envelope
N-factor is larger than the NCF envelope of envelope even though
traveling crossflow modes are more unstable than stationary ones.
Very different results are obtained depending on the definition;
hence, for transition prediction, calibration must be determined for
each formulation.

III. Database Approach for Longitudinal Instabilities

Longitudinal, or TS instabilities, are governed by viscosity. A first
model of such instabilities for 2-D low-speed flow was proposed by
Vialle andArnal [4] in 1984 based on a set of exact stability solutions
of attached Falkner–Skan self-similar profiles in 2-D flow. The

incompressible shape factor Hi� �1=�1, where �1 �
R
U�y�
Ue
�1 �

U�y�
Ue
�dy is the momentum thickness, was used as the key parameter.

The simplified stability approach, or databasemethod, provides an
estimation of the growth rate 	 directly from mean flow parameters
and the boundary-layer profile characteristics. The starting idea is
that the Reynolds number variation of growth rates obtained solving
the exact Orr—Sommerfeld equations can be represented, for a given
profile, using two half parabolas as shown in Fig. 5. Extension to
deceleratedflow (Hi > 2:59) can be obtained using an added inviscid
parabola, as shown in Fig. 6. The effect of compressibility was
introduced into the model, using the external Mach number as an
additional parameter [3].

For a given mean flow (Hi, Me) and reduced frequency

F� 2�f
e
�eU

2
e
� !r

R�1
, the amplification curve is approximated as

	 �max �	V; 	I � 	V;I � 	M
�
1 �

�
R�1 � RM
RK � RM

�
2
�

RK �
R0 if R�1 < RM
R1 if R�1 > RM

where 	M, R0, R1, and RM are associated with both the viscous and
the inviscid parabolas of Fig. 6.

Fig. 3 ComparingNTS andNCF0 for LST and database for a low-speed

case.

Fig. 4 Consequences of various definitions for NCF.

Fig. 5 Basic parabola model.

Fig. 6 Extended parabola model for TS waves.
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RM � k1FE1

R1 � k2FE2
for viscous or inviscid parts

R0V
� R0I

� RMV
�1� C�Fc � F�� 	MI

� BI
�
1 � F

FoI

�

	MV
�min

�
BV

�
1 � F

FoV

�
; 	MVMAX

�

Using these definitions, 15 parameters need to be determined as
functions of Hi andMe:

�B;Fo; K1; E1; K2; E2�I;V ; C; Fc; 	MVMAX

This is realized using a two-entry lookup table. Amplification rates
are then obtained as a function of the Reynolds number R�1 based on
the incompressible (respectively compressible) displacement thick-
ness for incompressible (respectively compressible) flow. Moreover,
the effect of wall temperature Tw can be modeled using four more
parameters modifying the previous 15.

Tables are defined for 2:22<Hi < 4:023 and 0<Me < 1:3. Use
is limited to profiles without backflow. To calculate stabilizing
regions, where N-factors decrease, extension to stable amplification
rates has been added by extrapolating the parabolas with a line
tangent at the zero crossing point, as shown in Fig. 6.

There are two ways to use this model. First, as originally
conceived, it can be applied to the velocity component profile in the
direction of the external streamline. This defines a TS amplification
rate, which can be integrated intoN-factor curves, producing theNTS

N-factors after a frequency envelope. For transonic flows, the
amplification rates generated by the method correspond to the most
unstable oblique wave in exact calculation.

Second, velocity profiles projected in the � direction can be
considered, using Gaster’s relation and the Stuart theorem in theway
described in the next section. This allows optimization in the �
direction, and can be used to define an envelopeN-factor (still limited
to viscous instabilities). This second method slightly improves the
longitudinalN-factor computation, and generates a� dependence. It
may also complement the computation of the envelope by including
highly oblique longitudinal waves (see Fig. 7 and corresponding
discussion).

IV. Simplified Model for Inflectional Instabilities

Crossflow instabilities are inflectional in nature, and they are
determined by the location and characteristics of the velocity profile
inflection point. Considering Falkner–Skan 2-D profiles with reverse

flownear thewall, it was first shown [21] in 1986 that two parameters
had to be used, related to the characteristics of the inflection point.
These were Ui � u�yi� and Pi � yi�@u@y�yi , where yi is the location of
the highest inflection point. A first model was developed based on
similar profiles that was found inadequate when looking at
inflectional profiles like those causing crossflow instabilities in 3-D
boundary layers. A newmodel was then created during the ELFIN II
project by Casalis and Arnal [7] based on a series of actual profiles
computed near the attachment line of swept profiles, and successfully
applied to propagating crossflow instabilities.

To extend a 2-D model to 3-D mean flow, use of Stuart’s theorem
[22] and Gaster’s relation [23] are necessary. In temporal theory, and
for incompressible flow, Stuart’s theorem states that the growth rate
	� in any direction � can be determined from the stability of the 2-D
velocity profile resulting from the projection of the original 3-D
velocity in that same� direction. This projected 2-D profile is defined

as U� � �r
k
U� �r

k
W, where k�

�����������������
�2r � �2

r

p
is the modulus of the

wave vector k. This applies in the case of temporal theory, whereas
boundary-layer stability usually uses spatial theory. Gaster’s relation
gives a relation expressing spatial growth rate in some � direction in
terms of temporal amplification !i, group velocity modulus Vg, and
direction ’g. The group velocity direction is ’g with respect to the
local x direction. In most cases, ’g remains very close to �, within a
few degrees (i.e., the group velocity direction remains very close to
that of the external velocity). This property is used here, as well as in
many instances of exact LST resolutions. Gaster’s relation may be
written as

� 	’ �
!i

Vg cos�’ � ’g�

In x direction, ’� 0 and �	x � !i
Vg cos�’g�

.

The amplification �	x may be expressed in terms of �	’
computed in some ’ direction

	x � 	’
cos� � � � ’g�

cos�’g�

and, noting ’g 	 �,

	x 	 	’
cos� �
cos���

This relation gives the amplification in x direction, used forN-factor
integration, as a function of the amplification in the ’ direction,
computed using the velocity profile projected in that direction.

In the case of an inflectional profile, the amplification rate is
defined as before

Fig. 7 Comparing viscous and inflectional models to the exact

amplification (3-D low-speed case).

Fig. 8 Zero-frequency exact stability solutions for three stations.
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	 � 	M
�
1 �

�
R�1 � RM
Rj � RM

�
2
�

Rj �
R0 if R�1 < RM
R1 if R�1 > RM

now with the following definitions:

	M � aF� b
����
F
p
� 	0 RM � kMF�mM R0 � k0F�m0

R1 � k1F�m1

where a, b, and 	0 are analytical functions of Ui, Pi, and the (k, m)
coefficients are functions of 	0.

Extension to compressible flow has been achieved by using the
generalized inflection point, @

@y
�� @u

@y
� � 0, and introducing the

density value into Pi:Pi � ��yi�yi�@u@y�yi .
In the case of multiple inflection points, the highest is always

selected. In regions where modes are damped, growth rates are again
approximated using linear extensions of parabolas, as shown in
Fig. 6. The final model applies only to traveling crossflow insta-
bilities (F > 0), and in a range j j< max < 90 deg. In practice,
 max is set between 88.5 and 89 deg. For nonzero frequencies, the
two models for longitudinal and crossflow instabilities were later
combined. The resulting database method produces, with high
efficiency, an estimation of the stability characteristics of 3-D
boundary layers. Figure 7 compares the TS and CF growth rates to
exact LST solutions, for a swept wing low-speed case at a given
nonzero frequency. The method of profile projection is used here for
both TS and CF. It can be seen in Fig. 7 that database TS growth rates
remain close to exact growth rates up to about  � 70 deg, and
misses completely the CF contribution for larger  . On the other
hand, around � 80 deg, the CFmodel produces a good estimation
of themost amplifiedCF instability. In general, when unstablemodes
exist the TS models produce quite a good approximation of 	� �
over a wide  range, whereas the CF model only produces a good
estimation of 	CF;max.

V. Stationary Modes

The previously described model is strictly limited to traveling
instabilities, and indeed its precision increases with frequency. It is
well-suited for transition predictions on transonic swept wings, but
does not allow comparisons to results obtained using two N-factor
methods.With the objectives of extending the previousmodel, and to
allow such comparison, stationary modes were later considered.

This model was created based on exact stationary stability
solutions of a set of low-speed and transonic wing flows, with
validation using quite an extensive set of cases. This part was realized

by Perraud and Donelli [10] in the application of hybrid laminar flow
technology on transport aircraft (ALTTA) European project. In this
case, the maximum growth rate is generally located at the junction of
branchesB1 andB2, as shown in Fig. 8, for exact stationary solutions
for three stations of a low-speed case (60
 swept ONERA-D profile).
At each station, the solution curve is obtained by varying �� from
a small value up to about 8000 m�1. In the selected representation ( ,
�i), these solutions are composed of three branches: B0 corre-
sponding to small ��, then B1 and B2 for increasing ��. The largest
amplification is observed at the junction of B1 and B2 (between 82
and 85 deg at the first station), hence only these two branches need to
be considered in a model.

In this case, the Reynolds variations of projected amplification
rates should not be represented by parabolas, but by hyperbolas as
visible in Fig. 9. Plotting the variations of �iR’ versus R’ produces
almost straight lines, hence amplifications can be estimated as
�i’R’ � A:R’ � B.

Based on the results shown in Fig. 9, this expression may be
written for branch one as �i’ � 	1�1 � Rc=R’�, where 	1 repre-
sents the asymptotic value of the growth rate when the Reynolds
number R’ tends to infinity, and Rc is a critical projected Reynolds
number. These two parameters are equivalent to the coefficients A
and B in the previous equation. Parametric variations show that Rc
essentially depends on parameter Pi, whereas 	1 is a function ofUi.

The two branches need to be modeled independently. In both
cases, 	1 is represented using a polynomial expression function only
ofUi, of third order for branch one and second order for branch two.
An exponential function ofPi is used forRc for branch one, and again
a second-order polynomial in Rc for branch two.

An additional condition, based onPi, allows to determine an upper
 limit. A spline function is used to represent the junction between
the two branches, because using the crossing point between the two
branches would strongly overestimate the growth rate. The local
extremum gives the maximum growth rate and the corresponding .
This produces the largest stationary growth rate at any given station,
so that the NCF is equivalent to an envelope over all values of the
crossflow wave number ��.

Figure 10 shows a comparison of the exact and modeled amplifi-
cation rates for a typical transonic case for three different stations.
Actual amplification rates (for the 3-D profile) are shown, for which a
very good agreement is obtained.

VI. Methods for Transition Prediction

Shooting methods are the classical tools for solving this type of
problem, but they require the initial guess of a solution that should
not be too far from the real solution. This initial guess creates a

Fig. 9 Reynolds variations of the two branches.
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Fig. 10 Exact and modeled growth rate curves (thin line represents

exact, dashed line represents model).
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difficulty in applying these methods. The TS growth rates only
depend on integral boundary-layer parameters and Reynolds and
Mach number, and the CF and CF0 mostly depend on the char-
acteristics of the highest inflection point in the velocity profile. The
three models were then combined to produce growth rates for the
various kinds of boundary-layer instabilities. These growth ratesmay
be integrated to produce envelopeN-factors exactly as in the case of
exact stability theory,

Nenv �max
f
�
Z

max�	TS; 	CF0; 	CF�dx�

In practice, a method based on the Fibonacci series is used to locate
the wave direction producing the largest growth rate after the
definition of the range of variation of the  angle. This is done
separately for NTS and NCF. In the case of the envelope, careful
optimization has ensured that, in general, the most amplified
frequencies are represented with a precision of about one count inN-
factor, for N 	 10, or about 10%. The transition N-factor must then
be determined exactly as it is determined when using an exact
stability code, with values at transition depending on the type of
environment (flight or wind-tunnel) and of the dominant type of
instability, see [20].

The two N-factors’ transition prediction method may also be
used, with two options. The first tries to resemble the classical
NTS=NCF method, based onNCF0 andNTS with  � 0 deg (but uses
the compressible approach for compressible flows). The second
takes into account a larger set of modes, as it includes traveling
waves into NCF.

Concerning crossflowmodels, there remains a lack of precision for
low frequencies at the junction of the two models. Growths of low-
frequency traveling crossflow instabilities are underestimated, but
zero-frequency modes are correctly estimated. This does not
seriously impact the N-factor curves and the quality of transition
prediction.

The resulting code allows complete stability calculation with
about 2 orders of magnitude reduction in computing time compared
to exact stability calculation. Another important advantage of the
method is that it does not require any initial values, and is thus well
adapted for insertion into boundary-layer codes for fully automatic
usage, like it has been done in the ONERA 3-D boundary-layer code
3C3D, but also in codes used by the European Research Centers
Instituto Nacional de Tecnica Aeroespacial (INTA, Spain), Swedish
Defense Research Agency (FOI, Sweden), Centro Italiano Ricerche
Aerospaziali (CIRA, Italy), andDLR (Germany), in the course of the
European projects EUROLIFT, EUROLIFT 2, and SUPERTRAC. In
the case of 3C3D, this allows the stability computation over the

complete surface of a vehicle, with a 3-D mean flow (local stability
hypotheses are still contained in the models).

Regarding the coupling to RANS codes, several difficulties have
to be addressed: first, assessing the conditions to obtain an adequate
precision of the velocity profiles and boundary-layer description;
second, reducing the computation time to become compatible with
iterative formulations; and third, allowing the transition to move in
both upstream and downstream directions in the course of the
computation. A number of tests have been conducted regarding the
first point; required precision may be obtained using a Roe scheme
with low-dissipation settings, whereas a centered Jameson scheme is
not adapted, evenwith very small numerical dissipation. The number
of points in the boundary layer should be at least about 40, avoiding
too much wall clustering. The second and third points have been
treated already with the use of transition criterion and the automatic
coupling to a boundary-layer code for swept wing flows. It should be
noted that although the TS model could be adapted to the RANS
precision without much difficulty, the two crossflow models
definitely require a precise description of the inflection point.

VII. Applications

The first example corresponds to a low-speed (80 m=s) swept
(’w � 50 deg) ONERA-D profile of 0.3 m chord, at �1 deg
incidence (already used for Figs. 3 and 4 ). The velocity distribution
in Fig. 11 shows a small peak on the upper side near the leading edge,
followed by a negative pressure gradient. For the sake of clarity, only
database results are shown in Fig. 11 for this case. Stationary and
traveling crossflow instabilities are observed near the leading edge, in
the negative pressure gradient region. Quite typical for this kind of
flow, stationary instabilities dominate crossflow along 5–7% of
chord, whereas traveling waves become larger further downstream.
TS instabilities ( � 0 deg) start to grow at about 15% chord, where
the negative pressure gradient becomes less pronounced and rise
more rapidly past the maximum velocity point. The four instability
curves correspond to NTS, NCF0, NCF, and NENV. Concerning the
envelope N-factor, crossflow contributes to its first part, roughly up
to the maximum velocity point, and then TS waves are the dominant
contribution. All the curves are envelope overfrequency except for
the stationary crossflow.

It should be kept in mind that this NCF0 is comparable to a zero-
frequency envelope N-factor, by definition with larger values than
what would be obtained with LST based on constant �� method
(cf. Fig. 4).

It is quite obvious from Fig. 11 that transition will correlate to
different N-factor values depending on the definition. Although a
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Fig. 11 Application to a low-speed swept wing: database generated N

factors and velocity distribution.

Fig. 12 Application to a low-speed case: comparison to exact LST.
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single N-factor is used with the envelope method, a curve has to be
defined in the case of two N-factor methods, transition being
predicted when the point of coordinates (NCF, NTS) crosses it. See
[24] for examples of application.

A second case, corresponding to a low-speed DTP-B wing model
at 40 deg sweep is next considered (U1 � 70 m=s, ���4 deg).
Figure 12 shows the velocity distribution and compares database N-
factors with their exact LST counterparts. Again, this upper side at
negative incidence shows an extended negative pressure gradient
without any leading-edge peak, which promotes crossflow insta-
bilities. TS waves start further downstream, resulting in a mixed CF
and TS case. Comparison to exact LST results shows differences
below two points inN-factors, or about 10%, on the envelope curve,
and even smaller for NTS and NCF.

A third example, presented in Fig. 13 with the same curves as
Fig. 12, corresponds to a transonic case from the Fokker 100 natural
laminar flow flight experiments, which were run in the frame of the
European project ELFIN [19]. Boundary layers were computed
using a conical wing hypothesis, whereas stability calculations were
obtained here assuming an infinite swept wing. The vertical arrow
indicates where transition occurs, and the velocity distribution is also
plotted on the figure. The database results are again compared with
exact LST computations, with a fair agreement in this difficult test
case. Departure from exact results remains lower than two at the
transition location, but with increasing difference as the database
NCF0 remains at a constant value while the LST result continues
growing.

Five similar Fokker 100 cases were analyzed, bringing out the
following correlations at transition in flight conditions: NTS � 9,
NCF � 15, NCF0 � 11, and Nenv � 22 for TS-dominated cases, and
Nenv � 15 for crossflow-dominated cases.

In wind-tunnel studies with the proposed databasemethod, typical
values for crossflow cases are NCF � 7 and NCF0 � 5, but these
values should be adapted for each test.

Application to transonic cryogenic tests (transonic smallmodels at
large Reynolds numbers) showed that the crossflow model is not
well-adapted at present because boundary layers become extremely
thin, outside the validity domain of the model. On the other hand, the
NTS=NCF0 approach remains valid in these configurations.

After application to a number of swept profiles, the complete
database method has been introduced as a transition prediction tool
into the 3C3D boundary-layer code [25], allowing the computation
of amplification for 3-D flows over the complete surface of a wing or
a vehicle. In 3C3D, growth rates are calculated in the course of the
parabolic boundary-layer equations resolution, and then N-factors
are integrated along external streamline directions, until transition (or
a separation) is predicted. Note that 3C3D also includes a transition
zone calculation based on an intermittency function. To illustrate the
use of this tool, an application to the slat of a high-lift configuration is
presented in Fig. 14. The KH3Y configuration was extensively
studied within the European projects EUROLIFT I and II [14].
Results are presented here for the upper slat, for a wing incidence of
8.5 deg and a chord Reynolds number of 4:15 � 106.

Three methods are used in this case, envelope, NTS=NCF, and
NTS=NCF0. In the first case, the three models (for TS, CF, and CF0)
contribute to the envelope curve. In the second case, NCF includes
waves with a  direction such that j j< 60
, and NCF is based on
traveling and stationary waves. In the last one, NTS is restricted to
 � 0
 andNCF0 to f� 0. Figure 14 shows the various regions of the
flow according to the three methods, but with the N-factors at
transition given in Table 1.

The outer slat is characterized by a large region (25% of span)
where transition is caused by laminar separation. On each side of this
separated zone, transition is predicted by 3C3D between 30 and 50%
chord, followed by an extended transition region up to the trailing
edge. Early transition is only predicted near the slat root with
NTS=NCF0, resulting in a transition zone followed by a turbulent one.
In each case, the unstable region is delimited into TS and CF regions,
depending on the largest of the two N-factors. Comparison of the
results seems to show the equivalence of the three methods provided
that proper settings are used for transitionN-factors. It would bemost

interesting to compare the spanwise evolution of transition with
experimental results, but in most experiments transition measure-
ments are usually done in a limited spanwise region.

A final example is presented in Fig. 15 that corresponds to a
Mach 2 highly swept (’w 	 60 deg) laminar wing designed and
flight tested by the Japan Aerospace Exploration Agency (JAXA)
[26]. ONERA cooperated with JAXA on the pre- and postflight
numerical transition analysis and performed wind-tunnel tests in the
ONERA S2. Figure 15 shows, for a postflight case, a comparison of
envelopeN-factor curves obtainedwith two exact stability codes and
with the database method. The agreement on the envelope curves is
here again very satisfying. An extended version of the TSmodel was
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Fig. 13 Application to a transonic Fokker 100 flight-test case. (Same
legend as Fig. 12. Arrow shows the transition location).

Fig. 14 Application to the upper side of the KH3Y slat (8.5� incidence,

ReC � 4:15 106.

Table 1 Transition N-factor settings
for the KH3Y slat

NENV or NTS NCF

Envelope 7.15
NTS=NCF 7.15 7
NTS=NCF0 7.15 5
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used for this case, which includes the wall temperature Tw as an ad-
ditional parameter.NTS=NCF curves are also shown but not compared
to exact calculation. Nevertheless, these curves confirm that cross-
flow is effectively contributing to themost upstream instabilities, and
is quite correctly predicted even for this supersonic case.

VIII. Conclusions

Three separate models were developed for simplified prediction
of longitudinal (TS), traveling crossflow (CF), and stationary
instabilities (CF0), aimed at allowing fast and automatic transition
predictions. These three models rely heavily on Stuart theorem,
stating in temporal theory the equivalence of the stability charac-
teristics of a 3-D velocity profile in direction  with that of the
projected 2-D profile in the same direction, and on Gaster’s relation
to transform the spatial growth rates. Although integration should in
principle be conducted along the group velocity direction, it is
assumed that this direction remains very close to the external velocity
direction. The same hypothesis is often used in exact stability codes.

These models have been inserted inside the 3-D boundary-layer
code 3C3D, and allow fully automatic transition predictions in a
broad range of configurations. Extension to high-lift cases with
strong acceleration was realized with application to the KH3Y three
elements wing. The two main advantages of these methods are that
they do not require determination of initial values, and the computing
time is about 2 orders of magnitude smaller compared with exact,
local stability.

These methods are presented as engineering tools; they do not
intend to replace exact stability codes. They aremost useful in design
and when parametric variations are considered, like for optimization
purposes.

Emphasis has been placed here on 3-D transonic configurations,
but there exists an extension of the TS model to supersonic flows up
to Mach 4. This extension was used for the highly swept JAXAwing
presented in the paper. CIRA and ONERA also used the database
approach in the design of the Mach 2 SUPERTRAC wing, in which
case it was introduced into an optimization process.

In the case of a boundary layer computation time is very small, and
in 3C3D the three models and N-factor curves are in fact computed,
allowing comparison of the results. For the integration into a RANS
code, selection of a single method would be necessary to reduce
computing time to a minimum because of the iterative process.
Two methods are most cost effective, the envelope method and the
NTS=NCF0. Introduction into a RANS code has not yet been realized,
although conditions for using velocity profiles extracted fromRANS
fields have been established.

ONERA database methods were developed for transonic aero-
nautic applications with emphasis on crossflow instabilities, and are
not applicable to separated boundary layers. It should also be noted
that the traveling crossflowmodel has been inserted into the ONERA
local stability code CASTET to provide automatic initialization for

crossflow-dominated cases, from low-speed to transonic flows, with
good success. The models presented can also be used to estimate a
priori the range of variation of various parameters before conducting
a complete stability analysis with a local or nonlocal code.

Acknowledgments

The work presented here received support from the European
Commission, under the contracts ELFIN II, EUROTRANS,
EUROLIFT, and EUROLIFT II. Support was also granted from
Centre National d’Etudes Spatiales and from Service des
Programmes Aéronautiques. The preparation of the present paper
was supported by internal ONERA funding.

References

[1] Smith, A. M. O., and Gamberoni, N., “Transition, Pressure Gradient
and Stability Theory,”Douglas Aircraft Co., CARept. ES 26388, Long
Beach, CA, Sept. 1956.

[2] van Ingen, J. L., “A Suggested Semi-Empirical Method for the
Calculation of the Boundary-Layer Transition Region,” Univ. of Delft,
Rept. VTH-74, Dept. of Aerospace Engineering, Oct. 1956.

[3] Arnal, D., “Transition Prediction in Transonic Flow,” IUTAM

Symposium Transsonicum III DFVLR-AVA, Springer–Verlag, Berlin,
1988, pp. 253–262.

[4] Vialle, F., “Transition Sur un Ellipsoïde de Révolution,” ONERA,
Student Training Rept., Sept. 1984.

[5] Stock, H.-W., and Degenhart, E., “A Simplified eN Method for
Transition Prediction in Two-Dimensional Incompressible Boundary
Layers,”Zeitschrift fur Flugwissenschaften und Weltraumforschung,
Vol. 13, No. 1, 1989, pp. 16–30.

[6] Gaster, M., and Jiang, F., “Rapid Scheme for Estimating Transition on
Wings by Linear Stability Theory,” 19th Congress of International

Council for the Aeronautical Sciences (ICAS), ICAS Paper 1994-243.
[7] Casalis, G., and Arnal, D., “ELFIN II Subtask 2.3: Database method,

Development and Validation of the Simplified Method for Pure
Crossflow Instability at Low Speed,” ELFIN II, Technical Rept.,
No. 145; also ONERA, Rept. No. 119/5618.16 DERAT, Dec. 1996.

[8] Fuller, R., Saunders, W. R., and Vandsburger, U., “Neural Network
Estimation of Disturbance Growth Using a Linear Stability Numerical
Model,” AIAA Paper 1997-0559, Jan. 1997.

[9] Crouch, J. D., Crouch, I.W.M., andNg, L. L., “Estimating the Laminar/
Turbulent Transition Location in Three-Dimensional Boundary Layers
for CFD Applications,” AIAA Paper 2001-2989, Jan. 2001.

[10] Perraud, J., Donelli, R. S., and Casalis, G., “Database Approach:
Treatment of Stationary Modes,”ALTTA, Technical Rept. No. 24; also
ONERA, Rept. No. RT 140/03828 DAAP/DMAE.

[11] Langlois, M., Masson, C., Kafyeke, F., and Paraschivoiu, I.,
“Automated Method for Transition Prediction on Wings in Transonic
Flows,” Journal of Aircraft, Vol. 39, No. 3, 2002, pp. 460–468.
doi:10.2514/2.2951

[12] Drela, M., “Implicit Implementation of the Full eN Transition
Criterion,” AIAA Paper 2003-4066, Jan. 2003.

[13] Cliquet, J., Houdeville, R., and Arnal, D., “Application of Laminar-
Turbulent Transition Criteria in Navier–Stokes Computations,” AIAA

Journal, Vol. 46, No. 5, 2008, pp. 1182–1190.
doi:10.2514/1.30215

[14] Perraud, J., Cliquet, J., Houdeville, R., Arnal, D., and Moens, F.,
“Transport Aircraft 3-D High-Lift Wing Numerical Transition
Prediction,” Journal of Aircraft, Vol. 45, No. 5, 2008, pp 1554–1563.
doi:10.2514/1.32529

[15] Krumbein, A. M., “Automatic Transition Prediction and Application to
Three-DimensionalWing Configurations,” Journal of Aircraft, Vol. 44,
No. 1, 2007, pp. 119–133.
doi:10.2514/1.22254

[16] Toulorge, T., Ponsin, J., Perraud, J., and Moens, F., “Automatic
Transition Prediction for RANS Computations Applied to a Generic
High-Lift Wing,” AIAA Paper 2007-1086, Jan. 2007.

[17] Moens, F., Perraud, J., Iannelli, P., Toulorge, T., Eliasson, P., and
Krumbein, A., “Transition Prediction and Impact on 3-D High-Lift
Wing Configuration,” Journal of Aircraft, Vol. 45, No. 5, 2008,
pp. 1751–1766.
doi:10.2514/1.36238

[18] Mack, L. M., “Boundary-Layer Linear Stability Theory,” Special

Course on Stability and Transition of Laminar Flow, AGARD Rept.
No. 709, 1984.

[19] Schrauf, G., Perraud, J., Vitiello, D., and Lam, F., “Comparison of

Fig. 15 Application to the Mach 2 JAXA wing; comparison to exact

LST.

PERRAUD ETAL. 2683

http://dx.doi.org/10.2514/2.2951
http://dx.doi.org/10.2514/1.30215
http://dx.doi.org/10.2514/1.32529
http://dx.doi.org/10.2514/1.22254
http://dx.doi.org/10.2514/1.36238


Boundary-Layer Transition Predictions using Flight Test Data,”
Journal of Aircraft, Vol. 35, No. 6, 1998, pp. 891–897.
doi:10.2514/2.2409

[20] Arnal, D., Casalis, G., and Houdeville, R., “Practical Transition
Prediction Methods: Subsonic and Transonic Flows,” Advances in

Laminar Turbulent Transition Modeling, von Karman Inst. Lecture
Series, 2008 (to be published); also ONERARept. RF 1/13639DMAE,
Sept. 2008.

[21] Delbez, J., and Hallouard, J. M., “Etude de la Stabilité des Profils de
Couche Limite Laminaire Avec Courant de Retour,” ONERA, Student
Training Rept., June 1986.

[22] Gregory, N., Stuart, J. T., andWalker, W. S., “On the Stability of Three-
Dimensional Boundary Layer with Application to the Flow Due to a
Rotating Disc,” Philosophical Transactions of the Royal Society of

London, Series A: Mathematical and Physical Sciences, Vol. 248,
No. 943, 1955, pp. 155–199.
doi:10.1098/rsta.1955.0013

[23] Gaster, M., “A Note on the Relation Between Temporally Increasing
and Spatially Increasing Disturbances in Hydrodynamic Stability,”
Journal of Fluid Mechanics, Vol. 14, No. 2, 1962, pp. 222–224.
doi:10.1017/S0022112062001184

[24] Schrauf, G., “Large-Scale Laminar Flow Tests Evaluated With Linear
Stability Theory,” AIAA Paper 2001-2444, Jan. 2001.

[25] Houdeville, R., Mazin, C., and Corjon, A., “Method of Characteristics
for Computing Three-Dimensional Boundary Layers,” La Recherche

Aerospatiale, Vol. 1, 1993, pp. 37–49.
[26] Tokugawa, N., Kwak, D.-Y., Yoshida, K., and Ueda, Y., “Transition

Measurements of Natural Laminar Flow Wing on Supersonic
Experimental Airplane NEXT-1,” Journal of Aircraft, Vol. 45, No. 5,
2008, pp. 1495–1504.
doi:10.2514/1.33596

A. Tumin
Associate Editor

2684 PERRAUD ETAL.

http://dx.doi.org/10.2514/2.2409
http://dx.doi.org/10.1098/rsta.1955.0013
http://dx.doi.org/10.1017/S0022112062001184
http://dx.doi.org/10.2514/1.33596

