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Abstract The present paper deals with the stability analysis of the flow induced
by wall injection either in a rectangular duct or in a cylindrical pipe.
As the basic flow is strongly nonparallel, the modal form gives ampli-
tude functions which are dependent on two space variables. The linear
stability problem is thus described by a PDE system whose results seem
to be in good agreement with the experiments.

Introduction
Under some conditions, large solid rocket motors may exhibit thrust

oscillations. In order to analyse this phenomenon, cold gas experiments
are carried out. As suggested by numerical simulations, e.g. Lupoglazoff
and Vuillot, 1996, the velocity field in the cold gas set-up is expected to
reproduce faithfully the one occurring in real motors with combustion.

In the framework of the instabilities modelling, the main difficulty in
the present case deals with the basic flow which is strongly non parallel.
Usual stability approaches are performed within the parallel assump-
tion. In this case, using the normal mode form, the amplitude functions
depend on one space variable only and the linearized Navier-Stokes equa-
tions lead to an ordinary differential equation of Orr-Sommerfeld type.
This has been successfully applied to shear flows such as the boundary
layer or the jet flows. However there are some physical configurations
for which the basic flow is fully non parallel, its velocity field depends
on two space variables (instead of only one), like a separated boundary
layer and the boundary layer around an attachment line. In these cases,
the normal mode assumption leads to amplitude functions which depend
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on two variables and the stability equations then become an eigenvalue
problem written as a system of partial differential equations.

This second approach needs obviously large computational resources
mainly concerning the memory, but the major difficulty seems to be
related to the boundary conditions, except for the case of the Poiseuille
flow, see Tatsumi and Yoshimura, 1990. With non physical boundaries,
the published results are more recent, see Lin and Malik, 1996, Theofilis,
1998 and Robinet and de la Motte, 2003 for instance. The present paper
gives an outline for a flow which presents only one non physical boundary,
details can be found in Féraille, 2004. The obtained results are given in
comparison with measurements obtained with two cold gas set-ups, one
is a planar duct, the other one a cylindrical pipe.

1. Physical model

Theoretical model
Two configurations are analyzed, case 1 is a rectangular duct, case 2

a circular pipe, see figures below. In both cases, air is uniformly in-
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Figure 1. Scheme of VECLA set-up. Figure 2. Scheme of VALDO set-up.

jected through a porous wall. All quantities given below are made di-
mensionless thanks to the height H or R and the norm of the injection
velocity. The characteristic Reynolds number based on these quantities
is noted Re. In some conditions the flow is laminar at least for small
values of x. A laminar analytical steady inviscid solution exists ; in both
cases, corresponding streamfunctions are expressed by :

Ψ1 = x sin
(

πy

2

)
Ψ2 = x sin

(
πr2

2

)
(1)

where subscripts 1 and 2 correspond respectively to the rectangular duct
and the circular pipe. For the considered large Reynolds numbers, this
form is accurate enough, see Casalis et al., 1998.

The flow is strongly non parallel, particularly for small values of x, see
Figure 3. A linear stability analysis of this flow is carried out. Assuming
that the perturbation remains two-dimensional (case 1) or axisymmetric
(case 2), a streamfunction φ may be associated to the fluctuation. Due
to the non parallel nature of the basic flow, the normal mode writes as :

φ1(x, y, t) = φ̂1(x, y)e−iωt φ2(x, r, t) = φ̂2(x, r)e−iωt
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with ω a complex number, its real part ωr corresponds to the circular
frequency of the instability mode and its imaginary part ωi to the tem-
poral growth rate. The amplitude function thus depends on two space
variables and the linear stability problem consists in solving a partial dif-
ferential equation (PDE) for φ1 (resp. φ2) with respect to (x, y) (resp.
(x, r)) and ω is the eigenvalue to be determined.

The PDE has to be solved in a
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Figure 3. Steady streamlines, case 2.

rectangular domain. The trans-
verse coordinate y (or r) varies
between the symmetry line and
the porous wall and the axial co-
ordinate x varies from the front

wall x = 0 up to a given exit value Xe. On the first boundary, symme-
try conditions are imposed, on the second and third ones the fluctuating
velocity is imposed to be zero, the fourth boundary is artificial and “ad-
hoc” conditions are imposed (see section 2).

Experimental set-ups
The two configurations of figures 1 and 2 have been experimentally

explored with the set-ups VECLA and VALDO using the same feed-
ing equipment. Air coming from a pressurized tank at 250 bar is in-
jected inside the two set-ups through elementary throats that control
the mass flow rate entering the duct at several parts of the porous wall.
To compensate the decrease of temperature due to its depressurization,
air passes inside a gas heater before its injection. The heat quantity given
to the air is controlled by a thermo-regulator whose power is adjusted
to obtain a temperature of 20◦C inside the ducts.

The porous walls of the two set-ups are formed of bronze poral ob-
tained by joining together small spheres of bronze of same diameter.
Low porosities, typically equal to 8 µm or 18 µm, are adopted for these
porous walls in order to avoid as much as possible the transfer of acoustic
energy from the duct to the backside of the porous wall. The VECLA
set-up is composed of a planar chamber which is 603 mm in length and
60 mm in width whose bottom is equipped with a porous plate of 5 mm
thickness and 581 mm in length. The height of the duct can be fixed to
10 mm, 20 mm, 30 mm or 40 mm by mounting metallic blocks under
the top wall of the chamber which contains special ports where pressure
transducers and hot wire can be introduced. A nozzle can be attached to
the downstream end of the chamber. The VALDO set-up is of modular
type with a conception in separate modules, each of them containing a
porous cylinder of 60 mm in diameter, made in porous bronze of thick-
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ness 5 mm. Air is injected into each module by three orifices which are
regularly spaced around the circumference. The modules have a length
of 168 mm and, since four modules are available at the present time, the
maximum channel length is 672 mm. Over the four modules, one has
several ports located in front of holes drilled on the surface of the porous
cylinders at which the pressure, the temperature and the velocity of the
air inside the central duct can be measured. The radial displacement of
the hot wire is ensured by a pilotable table whose variation extent is of
100 mm. The set-up can operate in two versions depending if a nozzle
attached to the end of the injecting part is used or not.

2. Numerical procedure

The PDE system written for φ̂ (case 1 or 2) is discretized by a spectral
collocation method in the two space directions. The problem becomes
a generalized eigenvalue problem A.X = ωB.X with A and B two ma-
trices and X the vector corresponding to the value of φ̂ on each double
collocation point. Due to the size of the matrices, the spectrum (set of
the eigenvalues ω) is obtained part by part using an Arnoldi algorithm,
see Arnoldi, 1951. This means that a target is specified before each
calculation and only the eigenvalues close to it are computed. The ob-
tained results consist in a set of discrete complex values for ω. With 100
collocation points in x and 120 in r (case 2), table 1 gives the numerical

Table 1. Converged numerical eigenvalues for five modes, Re = 1000, case 2

k 1 2 3 4 5

ωr 5.4776 10.189 14.378 18.130 21.536
ωi -4.9307 -6.8131 -8.5493 -10.258 -11.810

values of some modes identified by the integer k, see figure 5.
After several attempts, a simple extrapolation for φ̂ is imposed at

the boundary Xe. The results (eigenvalue and eigenfunction) are found
amazingly to be independent of the type of conditions imposed at x = Xe

(other conditions have been tested, see Féraille, 2004) and are also in-
dependent of the location of the exit abscissa Xe. This is clearly shown
in figure 4, which gives the contours of |Re(φ̂2)| for four values of Xe.
Except maybe in a region very close to Xe, each result is completely
superposed to the other results obtained for larger values of Xe. This
means that the general structure of the mode is determined by the up-
stream part of the flow : moving the non physical Xe downstream does
not affect the upstream physical values associated to the eigenmode.
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Figure 4. Norm of the real part of φ̂2 associated to the mode k = 5. Superposed
results obtained with four different exit sections : 4, 6, 8 and 10, Re = 2100.

3. Stability results
The first result is the spectrum i.e. the set of the complex eigenval-

ues ω. For both configurations the spectrum is plotted in figure 5 in
the complex plane (ωr, ωi). Several observations may be done, they are
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Figure 5. Spectrum in the complex (ωr, ωi) plane : case 1 (left) with Re = 1000
and case 2 (right) with Re = 2100

the same in both cases. Only (temporally) damped modes are obtained
seeing that the temporal growth rates are all negative. The basic flow
is thus stable from this point of view. The eigenfunctions especially for
frequencies (dimensionless values) between 20 and 80 exhibit actually a
huge growth in the x direction, in fact a growth which is nearly exponen-
tial. The modes are stable with respect to the time but exponentially
growing in space (with respect to x) ! It can be also remarked that only
discrete values of the frequency are obtained. This result contradicts
the conclusion obtained by using the classical normal mode approach
(assuming that the basic flow is parallel whereas it is clearly not, see
figure 3). A continuous range of frequencies corresponding to spatially
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amplified modes is predicted by this usual stability analysis, see Casalis
et al., 1998. Comparison with the experiments is given in figure 6. The
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Figure 6. Comparisons between the new stability analysis and measurements of the
fluctuating velocity by a hot wire : case 1 (left) and case 2 (right)

vertical dashed lines correspond to the dimensional values of the different
discrete modes k shown in figure 5. A rather good agreement is obtained
especially in case 2 and the experimental results seem to be closer to a
discrete structure than exhibiting a continuous range of amplified fre-
quencies. The modes are temporally damped, are exponentially growing
in x and only some of them are measured. This may indicate that the
environmental fluctuations are very important in terms of receptivity.
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