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Abstract

Résumé

Langlois M., Casalis G., Arnal D., Aerospace Science and Technology, 1998, no. 3, 167-176.

The transition to turbulence of the laminar boundary layer plays an important role in airfoil design.
The new PSE approach is more accurate and consistent than the classical Orr—Sommerfeld theory. The
aim of this paper is to prove that this approach can be routinely used in practical applications to study
instabilities and to predict the onset of laminar—turbulent transition. The main difficulty in its intensive use
concerns the initialisation. However, systematic studies can be conducted and the results presented show
that the non-parallel effects are negligible for streamwise instabilities and strengthen n factor values for
crossflow instabilities. In some intermediate cases, the PSE results exhibit large crossflow amplification
for low frequencies as well as large streamwise amplification at higher frequencies, whereas only the latter
one is dominant according to the Orr—Sommerfeld theory. In these particular cases, the fluctuation spectra
present two relative maxima (with the PSE) and the instability type and the most amplified frequencies
can therefore be very different from those predicted by the Orr-Sommerfeld theory. © Elsevier, Paris

linear stability/PSE approach/application

Applications pratiques de I’approche PSE. La position de la transition laminaire—turbulent de la couche
limite joue un role important dans les performances aérodynamiques d’un avion. De nombreuses études ont
été du reste consacrées a 1’estimation de cette position. La plupart d’entre elles utilisent la théorie classique
d’Orr—Sommerfeld. La nouvelle approche dite PSE est plus générale et plus précise que cette derniére et
I’objectif de cet article consiste précisément & démontrer que cette approche PSE peut étre utilisée de fagon
systématique, pour des applications pratiques comme la détermination de la position de la transition dans
une couche limite tridimensionnelle. La difficulté principale pour cette utilisation « industrielle » réside
dans Dinitialisation des calculs. Certaines précautions étant prises, 1'article présente un large éventail
de cas d’applications de cette approche. Entre autres résultats, on montre que les effets non paralleles
modélisés par I"approche PSE et non pris en compte par I’approche classique sont presque négligeables
pour une instabilité longitudinale, mais peuvent conduire & une augmentation signification du facteur n
pour une instabilité transversale. Ainsi, certains cas, a priori dominés par I’instabilit¢ longitudinale a la
lumigre de la théorie classique apparaissent, par 1’approche PSE, relever plutdt de I'instabilité transversale
ou méme, dans certains cas, de ces deux types d’instabilité. Les spectres de fluctuation présentent alors
deux bosses longitudinales (avec 1'approche PSE), I'une a basse fréquence correspondant a I’instabilité
transversale, 1’autre 3 haute fréquence, trace de I’instabilité. On en conclut que le type d’instabilité, ainsi
que la gamme des fréquences les plus amplifiées peuvent varier considérablement avec la prise en compte
des effets non paralleles. © Elsevier, Paris

stabilité linéaire/approche PSE/application
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Nomenclature

T direction normal to the leading edge,
in the plane of the wing

Y direction normal to the wing surface

z direction parallel to the leading edge,

in the plane of the wing

Qoo freestream velocity

U, V,IW mean flow velocity components in the z,
y and z directions

Ue, W4 freestream velocity components in the z,
and z directions

U, VU, W perturbation components in the z,
y and z directions

R body curvature radius (m)

f dimensional frequency (Hz)

o™ wavenumber in the z direction

Q; spatial amplification rate in the z direction

I5) wavenumber in the z direction

&1 boundary layer displacement thickness
in the x direction

A dimensional wavelength (m)

o dimensional amplification rate (m™')

() wave propagation orientation, with respect
to the external streamline

Subscripts

e value at the boundary layer edge

ini value at initialisation station

b value at the z-location of transition

w value at the wall

i imaginary part

r real part

Superscript

dimensional quantity

*

1. Introduction

The prediction of the location of transition from a
laminar flow to a turbulent one plays a fundamental
role in the analysis of the flowfield around most
configurations of engineering interest. The linear
stability theory, in its ‘classical’, Orr—-Sommerfeld
(OS) form, has been extensively used for that purpose.
One of the main assumptions of this theory is that
the boundary layer can be considered as locally-
parallel, i.e. the mean flow is independent of x, the
longitudinal direction. The influence of this hypothesis
has been studied for a number of years with different
approaches. In most cases, though, these approaches
have been applied to the two-dimensional flat-plate
flow for which the non-paraliel effects are indeed
small.
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The more recent approach based on the Parabolised
Stability Equations (PSE), originally developed by
Herbert and Bertolotti [5] and Dallman et al. [7], takes
into account the dominant non-parallel effects in the
mean flow, as well as in the perturbed quantities.
This method can easily be applied to more complex
flows, such as that about a swept wing, for which
the non-paralle] effects are not known a priori. In the
work presented here, the PSE approach was used to
investigate the non-parallel linear stability of the flow
over such configurations of practical interest.

2. Methodology

2.1. Parallel Stability Theory (Orr-Sommerfeld)

The main element of linear stability theory is the
decomposition of all flow variables into a mean and
a fluctuating part, which, for an arbitrary quantity ¢*,
can be written as

¢*(x*7y*’z*,t*) — @* (x*7y*’z*)
+¢*(x*.‘y*’z*,t*) (])

In the above equation, $* represents the mean
flow and ¢* the perturbation, as the superscript *
denotes a dimensional quantity. This decomposition
is substituted into the governing flow equations,
which, after elimination of the known mean flow and
linearisation, yieds a homogenous and linear system

of equations for ¢*.

In the Orr-Sommerfeld theory, it is furthermore
assumed that the mean flow is parallel, ie. its
variations in z* and z*, as well as its normal
velocity component V*, are neglected. Under these
assumptions, the perturbation can be defined in modal
form. Furthermore, using dimensionless variables the
perturbation becomes

b (z,y, 2, t) = R((y)e'lestPz=wt)) (3

and appears thereby as the product of an amplitude
function and an exponential term. The numbers «,
0 and w are a priori complex. In this work, the
spatial formulation is used, with the hypothesis that
Bi = 0. Therefore, 8 and w are real numbers while
a is a complex number, the real part of which
represents a wavenumber and the imaginary part an
amplification rate. The dimensional wavelength and
the wave orientation are defined respectively as

N= 2 3)

Aerospace Science and Technology



On the Practical Application of the PSE Approach/Applications pratiques de I’approche PSE 169

and

¥ =tan"! s Yo )
(843

where 1. is the orientation of the external streamline
with respect to the z-direction. The Orr—Sommerfeld
theory results in the solution of a local eigenvalue
problem. The latter can be formally represented by

Los$ =0 (5)

The OS results presented in this paper were obtained
using the code COCIP [4].

2.2. Non-Parallel Stability Theory (PSE)

The PSE approach is also based on the decompo-
sition given by equation (1), but the z*-independence
of the mean flow, amplitude functions and wave-
number o* is no longer assumed (this also implies
that the mean flow normal component V* is no longer
neglected). It is assumed instead that these quantities
exhibit a weak dependence on z* and the form of the
perturbation becomes

¢* (m*’ y*’ Z*’ t*)

% * * i( _:ix a* (E*)dﬁ*—}rﬁ* PO t*)
T o

The PSE theory retains the z*-independence, its
strict validity is therefore limited to infinite swept
wings. Rather than an eigenvalue problem, the
linearised Navier—Stokes equations now lead to an z*-
evolution problem. This problem has the following
form

1%}
ox*

where Log is the same operator that was present
in equation (5). The operator Lxp contains non-
parallel terms linked to the mean flow and to the term
do* /dz*.

In equation (6), the z*-dependence of the perturba-
tion is split between the amplitude functions and the
exponential term containing «* (z*). To determine
a® uniquely, a normalisation relation, imposing the
slow variation in z* of the amplitude functions, is
used. Because a space-marching procedure is used, an
initial solution (perturbation profiles and «*) must be
imposed in addition to the usual boundary conditions
of vanishing perturbations at the wall and in the
freestream. These initial conditions are provided by
a parallel (OS) solution, thereby inducing a transient
phase in z*.

A PSE code was developed by the first author
to produce the results that will be presented. The
formulation and structure implemented in the PSE
code developed at DERAT [1] have been adopted.
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Los¢* + M ¢* + Lypg* =0 (N

2.3. Transition prediction

The amplification rates calculated by the linear
stability theory can be related to the transition
position by the use of the ¢” method. Whether the
parallel or non-parallel theory is considered, the n
factor is calculated by integrating the dimensional
spatial amplification rate, o, for a given dimensional
frequency, f. In the parallel theory, o corresponds to
« . Different integration strategies arise from the fact
that, with f fixed, there still remains the wavenumber
B to be determined [3]. Two such strategies were
considered in this work with the parallel theory: the
envelope method, in which 3* is determined in such
a way as to maximize the amplification rate at each
position

n(ta) = [ max{-o (7, 8 €hde @
and the constant-3* method

*

n(f, 27) = max {/w —U(f,ﬂ*,ﬁ*)df*} 9

*

in which the dimensional wavenumber 3* plays the
same role as the frequency. The latter method requires
that calculations must be performed for a considerable
number of values of 3* at each frequency.

In the non-parallel approach, only the constant-
#* method is considered. However, the physical
amplification rate, o, and other physical properties
of the perturbation such as its wavelength and
orientation, are not uniquely defined but depend on
what physical quantity is considered in the definition
of the perturbation amplitude. In the results that
follow, three amplitudes are considered, based on the
maximum rms values of the two perturbation velocity
components parallel to the surface and the integrated
fluctuation kinetic energy

Ay (z*) = max |2* (2", ¥ )lems

Ay (") = max |@" (2, ¥")|rms
e

/0 (@ (@ ) 10)

+ 18" (2", ¥ s
+ 0" (27, Y ims) dy”

A (z*) =
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3. Practical aspects of a PSE application

To illustrate some of the important features of
the use of the PSE method for linear stability
analysis, calculations were performed on three
different geometries:

—an infinite swept wing with the ONERA D profile
(chord normal to the leading edge, ¢ =0.35 m) in
the (60, —4) configuration (sweep angle of 60° and
incidence of —4°), at freestream velocities of 50, 65
and 80 m-s!;

—an infinite swept wing with the AFVD 82 profile
(chord normal to the leading edge, ¢ =0.3 m) in
the (49, -2) configuration at a freestream velocity
of 85 m-s7!;

—a generic wing equipped with suction chambers.

A detailed presentation of the stability results
obtained can be found in reference [6]. The external
velocity distributions for these three cases are shown in
Sfigures 1-3. On the ONERA D wing, figure 1 indicates

ONERA D (60,-4)wing
127 YU,

101

x*/c

0.0 .

0.0 2 4 .6 8 1.0

Figure 1. ONERA D (60, —4); external velocity distribution.

12k AFVD 82 (49,-2) wing

0.0 I | 1 | J
0.0 2 4 6 8 1.0

Figure 2. AFVD 82 (49, -2); external velocity distribution.

M. Langlois et al.

18 ~U e/Um Wing with discrete suction

1.6
14
1.2

1.0

x* (m)

.6 1 1 i L L L 1
00 2 4 .6 8 10 12 14

Figure 3. Wing with suction; external velocity distribution.

that streamwise instabilities will be dominant at low
speeds, while crossflow or mixed disturbances will
start playing a more important role as the freestream
velocity is increased. The same conclusions can be
drawn for the AFVD 82 wing, with a note of caution
related to the rapid decrease of velocity at about
quarter-chord.  Finally, the continuously-increasing
velocity on the wing with suction, figure 3, indicates
that the stability of this flow will be dominated by
crossflow disturbances. Figure 4 shows the suction
distribution used, with a constant suction rate in each
of the chambers.

3.1. Initialisation

The initialisation is a crucial part of PSE
calculations: it needs to be done in the initial region
of stable flows but neither too close (for the transient
to resolve) nor too far (as this induces too large an
initial transient) from the neutral curve, as will be
illustrated in the following example. One may know
the location of the parallel neutral curve from prior
OS calculations, but the location of the non-parallel

v Wing with suction

wim/s) Suction distribution
0.0 m M M | ™
-1
210
-3 L

X* (m)
0.0 A 2 3 4 5

Figure 4. Wing with suction; suction distribution.
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neutral curve can sometimes be significantly upstream
of the former. To illustrate this, a set of calculations
in which the initialisation station was varied was
performed on the ONERA D wing with a freestream
velocity of 80 m-s~!, at the values of the frequency and
wavenumber [* associated with the most amplified
wave. The results of these calculations are presented
in figure 5. There is a range of initialisation positions
in which the n factor curves coalesce, but moving out
of this range, in either direction, can induce significant
differences on the value of the n factor. In particular,
the long-dash curve (z},;/c = 0.0386) corresponds to
starting the PSE calculations just slightly ahead of
the parallel neutral curve: at the location of transition
(zf./c = 0.35) this results in the n factor going down
from 5.7 to 4.2. As the location of the neutral curve
varies for different values of f or %, it is usually not
possible to initialise the calculations for a complete
critical range of these parameters at a single location,
and the initialisation procedure has to be broken down
into sub-ranges of f and §* at different locations.

3.2. Curvature effects

As in the Orr—Sommerfeld theory, inclusion of
curvature effects in the PSE only requires the
modification of some terms in the stability equations,
but it does not change anything in the formulation
of the problem, its complexity or the computational
effort necessary to its solution. It should be noted
though that curvature-related terms are first-order, as
they depend on the inverse of the curvature radius,
which in turn is proportional to the x-derivative of the
airfoil surface slope. Whereas retaining these terms
is consistent with the principle of the PSE approach,
where a slow variation in z of the flow properties is
assumed, it may be considered inappropriate within
the framework of the Orr—Sommerfeld theory.

ONERA D (60,-4) wing
n Factor

Q,=80m/s i
£=1000 Hz p*=1250 m""
6 PSE - energy
4|
//
///*
A Xini/C Qliini (0S)
" 00032 ----0.0365
oL 7 0.0077 ------0.0204
0.0095-0.0126 —— 0.0180-0.0150
0.0150 ----- 0.0127
0.0203 ot 0.0104
0.0386 ———- 0.0018
o LzZ 1 1
0.0 A 2 3 4 x*fe

Figure 5. ONERA D (60, 4), Q- = 80 m-s~}; initialisation
influence.
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It is also interesting to point out that the value
of the curvature radius alone does not determine the
magnitude of the curvature stabilizing influence. It is
rather the boundary-layer-thickness-to-radius ratio that
is the determining parameter, and curvature effects are
therefore not necessarily greater where the curvature
ratio is smaller (i.e. very close to the leading edge).
This is illustrated in figures 6 and 7 for the ONERA,
Qo = 80 ms7!, test case at the values of frequency
and §* associated to the most amplified wave: the
evolution of Ac (energy-based amplification rate
difference due to curvature effects) closely follows
that of the §;/R ratio.

-1 ONERA D (60.-4) wing 31/R _
1/R (m 1 0004
fRim7) Q, = 80m/s
.0003
.0002
0.0 ' ' ‘ L .0001
0.0 A 2 3 4 x*fe
Figure 6. ONERA D (60, -4), Q~, = 80 m-s~1: curvature.
c(mh ONERA D (60,-4) wing Ao (m)
0 -~ Qw = 80m/s -12
20 L f = 1000 Hz p* =1250 m™!
___________________ 10
40 - e e
8
80 -
6
-80 +
-100| "'" :‘;’ ----- O, with curvature 44
— Ao
120N Y ’
; I G,w/o curvature —42
-140] i} x*/c
: 1 ] e 1 0
0.0 A 2 3 4

Figure 7. ONERA D (60, —4), Q. = 80 m-s~!; curvature effects.

3.3. Flows with rapid variations in x

The external velocity distribution of the ONERA D
(60, —4) test case, figure 1, shows a small plateau
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n Factor

ONERA D (60,-4) wing
Qe = 65m/s

Figure 8.

n Factor

ONERA D (60, —4), Qs = 65 m-s~%; n factor.

Wing with discrete suction
f = 2000 Hz B* =3000 m™

— 08

——PSE - A,
—em-= PSE - Ay
e PSE - Ag

Figure 9. Wing with suction; n factor.

86

85

84

83

Wing with discrete suction

f = 2000 Hz p* =3000 m""!

0.0

Figure 10. Wing with suction; wave orientation.

1 2 3
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at z*/c ~ 0.05. This should result in a change
of the slope of the n-factor curve, as crossflow
instabilities will be locally damped by the flat pressure
distribution. It is a well-known result that the OS
method adapts well to these local variations (even
though some numerical convergence difficulties can
occur). Figure 8 shows that this behaviour is equally
well reproduced by the PSE.

Another exemple of a flow with sudden variations
in z is provided by the discrete suction case. Figure 9
presents the n factors obtained for a single frequency
and spanwise wave-number. These results show that
this difficult test case is handled as well by the
PSE as by the OS approach. The evolution of the
wave orientation for the same case is presented in
Figure 10. The OS results are compared to the PSE
results corresponding to each of the amplitudes given
by equation (10). This shows a greater sensitivity of
the PSE to the variations of the suction rate, the peaks
on the wave orientation curves corresponding to the
beginning and end of suction chambers.

The influence of the z-discretisation on the PSE
results is illustrated for this same test case on figure 11
which shows the n factors obtained when using every
‘x-skip™” boundary-layer data point in the calculations.
It must be noted that the base z-discretisation does not
correspond to the inviscid-flow mesh, but to a finer
one built by the boundary layer solver and adapted
to the streamwise pressure gradient. There is no
difference between using all data points or every other
one, but significant differences appear if a large z-
increment is used, and these come not only from the
integration of the n-factor but also from differences
in the amplification rates. It should be noted that this
test case certainly represents an extreme, as far as
the z-step requirements are concerned. In cases that
do not exhibit such sudden z-variations, it is possible
to use every third or fourth point or an even coarser
mesh and still get the same results as with a very fine
discretisation. It should also be pointed out that there

6r Wing with discrete suction
f=2000 Hz B* =1000m™ .o :
PSE - Energy _______________________
4 -
S
B
1
=
2 I
0
0.0

Figure 11. Wing with suction; influence of x-step.
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ONERA D (60,-4) wing
Qu = 65m/s
Orr-Sommerfeld - envelope

10

2 4

n Factor
»
T

0.0 2 4 B xirfc 8 1.0

Figure 12. ONERA D (60, -4), Q.. = 65 m=""': n factor, OS
envelope.

10¢ ONERA D (60,-4)
Qw = 65m/s

Orr-Sommerfeld

n Factor

X'c

Figure 13. ONERA D (60, -4), (). = 65 ms~'; n factor, OS
constant-3*.

exists a theoretical lower limit for the Ax step [1],
but the problem of too small a Az has not been
encountered in the practical applications presented.

3.4. Integration strategies—transition prediction

Figures 12-14 show the typical results of a linear
stability analysis using the Orr—Sommerfeld and PSE
approaches with the envelope and constant-3* integra-
tion strategies, for the ONERA D, Q.. =65 m-s™! test
case. With the OS envelope method, figure 12, only
the frequency needs to be varied. With the constant-3*
strategy, the range of critical values of the spanwise
wavenumber (* must also be determined for each
frequency. Figures 13 (OS) and 74 (PSE) represent
the ensemble of the f and 8* values used, resulting
in a global envelope for the n factor from which
the value of n at transition (or vice versa) can be
obtained. The constant-3* strategy therefore requires

1998, no. 3

10 ONERA D (60,-4)

8 PSE - energy

Mye
<]
*g 6
w
c

4

2

o]

0.0
x'fc
Figure 14. ONERA D (60, —4), Q- = 65 m-s~'; » factor, PSE.

more computational time than the envelope strategy,
but is not really any harder to implement.

4. Non-parallel effects on transition prediction

Arnal and Juillen [2] have conducted a thorough
experimental investigation of the stability of the flow
on the ONERA D (60, —4) and AFVD 82 (49, -2)
wings, including the determination of the location
of transition. This allowed a correlation of the
numerical results obtained with the OS envelope,
OS constant-3* and PSE methods. For all these
methods, the following results have been obtained
without curvature. The results of this correlation
are summarized in fables 1-3. Table 1 presents the
value of the n factor at the experimental location of
transition. The critical values of frequency are listed
in table 2 while table 3 indicates the orientation of the
disturbance at transition.

At a freestream velocity of 50 m-s™', the stability
of the flow on the ONERA D wing is dominated by
streamwise disturbances, as can be seen from table 3.
The values of the n factor at the experimentally
determined location of transition, table I, clearly
indicate that the non-parallel effects are negligible
in this case: the value of n;, determined by the
OS constant-3* method falls within the range of
values obtained by considering different amplitudes
in the PSE. It can also be noted that the envelope
method produces a much higher value of n¢, than
both constant-3* methods.

At Q. =065 and 80 m-s!, where the most
unstable perturbation is neither purely streamwise nor
crossflow, the non-parallel effects are more important,
and of the same order of magnitude. It is interesting
to note in table 3 that the non-parallel effects in the
Qoo = 80 m-s™' case cause a shift in the orientation
of the dominant instability from a mixed to a
purely crossflow one. Figure 15 shows that crossflow



174

Table 1. # factor at transition.
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ONERA D (60, -4)
AFVD 82 (49, -2)
O =5 ,71 e . O~ = 83w~
2 = 50 s Q= = 65ms Qe = 30m-s abfe= 022
ap fe=10.95 e =0.62 ay Je=0.35
OS envelope 12.8 8.4 5.8 9.4
0OS i* 8.5 5.4 4.0 9.2
PSE — A. 9.0 6.9 5.7 119
PSE — A, 8.8 6.9 5.3 12.0
PSE — A 8.2 6.6 S.1 11.0
Table 2.  Critical frequency (Hz).
ONERA D (60, -4)
AFVD 82 (49, -2)
¢ - —1 o 1 ) . Qe = 8518
Do = 50118 Qw = 6burs Qe = 80 m-s P e =022
ay fe=1095 rhfe =062 /e =035
OS envelope 1000 1400 3250 5000
oS /= 1000 1750 3000 4000
PSE — A. 1000 1750 1000 5000
PSE — A, 1000 1750 1000 5000
PSE — A, 1000 1500 1000 5000
Table 3. Wave orientation at transition (°).
ONERA D (60, 4)
AFVD 82 (49, -2)
QO =85ms"!
Qo =30 ms"" Qe = 65ms"! Qe =80 ms"! al fe = 0.22
e fe = 0.95 ah fe = 0.62 al je=035 B
OS envelope 25 25 31 72
oS 7* 16 44 49 82
PSE — A. 14 53 84 78
PSE — A, 11 53 84 78
PSE — A.. 13 61 84 78

instabilities are present in the parallel results (they
produce the » factor maximum at z*/c =~ 0.05) but
are quickly damped out and do not play any role
further downstream. The inclusion of non-parallel
effects results in a strengthening of these crossflow
instabilities at all frequencies, figures 16 and /7.
At the higher frequencies, though, the crossflow
instabilities are still masked by the streamwise ones at
the location of transition. On the other hand, at low
frequencies, they retain high levels of amplification
and come to dominate. In this particular case, two
maxima can be observed in the fluctuation spectrum
at a given position, one corresponding to a streamwise
instability (f = 3000 Hz) and the other one to a
crossflow instability (f = 1000 Hz).

For the AFVD 82 test case, fable 3 indicates that
transition is caused by a crossflow instability whether

or not the non-parallel effects are included. The non-
parallel effects are very strong: table I shows an
increase of the n factor at transition approximately
equal to 2.5, from the parallel to the non-parallel
results, Contrary to previous results, the envelope
method in this case produces a n factor at transition
that is very close to that obtained with the OS
constant-7* method.

These results indicate that whereas non-parallel
effets are negligible on streamwise instability,
they are significant on mixed streamwise/crossflow
disturbances and can indeed be very strong on
purely crossflow ones. In some cases where the
paralle]l theory predicts a streamwise instability to be
dominant, inclusion of non-parallel effects can cause a
crossflow instability to dominate. When this happens,
there results a change in the critical values of the

Aerospuace Science and Technology
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frequency, as indicated in table 2 for the ONERA D
Q~ = 80 m=s! test case. When the nature of the
dominant instability is not affected by the non-parallel
effects, these values remain essentially the same (for
the same integration strategy).

7 r nFactor

ONERA D (60,-4) wing
Q, =80m/s

6 L f=3000 Hz

Orr-Sommerfeld

4

X*/c
Figure 15. ONERA D (60, —4), Q- = 80 m=s~'; n factor,
F = 3000 Hz, OS.

7 - n Factor ONERA D (60,-4) wing
( Q. =80m/s
6k f=3000 Hz
PSE - energy

x*/c

Figure 16. ONERA D (60, —4), .. = 80 m-s"': a factor,
f = 3000 Hz. PSE.

5. Conclusion

As it takes into account the largest non-parallel
terms, the PSE approach is more accurate than the
classical OS theory. However, accuracy often requires
numerical efforts and/or difficulties. The goal of
the present paper was to prove that this rule is

1998, no. 3

7 r nFactor

ONERA D (60,-4) wing
Q,=80m/s

6 - f=1000 Hz

PSE - energy

x*/c

Figure 17. ONERA D (60, —4), Q~ = &0 m=~~': n factor,
f = 1000 Hz., PSE.

only partly true for the PSE approach. However,
the examples chosen were limited to wind tunnel
experiments. The applicability of the PSE approach
for free-flight experiments is currently investigated
within the European EUROTRANS project.

From a numerical point of view, it must first be
said than the CPU time required by the OS and PSE
approaches is very similar. The PSE method does not
present any particular convergence problem even in
‘difficult’ cases, such as the one with discontinuous
suction presented in this article. The most important
difficulty for the PSE, and maybe the only serious one,
lies in the choice of the initialisation location, when
the initialisation is done with OS results. As proven
in this paper, there is a domain in x upstream of the
OS neutral curve in which the results are independent
of this location. However, in the practical use of this
approach, a large number of spanwise wavenumbers
and frequencies must be considered. The difficulty is
then to divide this number of 3 and f into different
groups and to find the proper initialisation location for
each group. This problem could be partly alleviated by
using results from a non-parallel local method (such
as the multiple-scale analysis) to initialise the PSE.

From a theoretical point of view, the PSE approach
is more general and more consistent as far as curvature
effects are concerned. The effects of the non-parallel
terms are negligible for streamwise instabilities and
can be very important for crossflow instabilities. When
both types of instability are present, the PSE results
often exhibit two maxima in the fluctuation spectra at
fixed :x:-positions. This behaviour can be verified with
experimental results.

As for the practical and accurate prediction of
the transition location, there is at this point no
clear advantage of the PSE approach over the OS
method, as none provides a consistent value of the
n-factor at transition. The solution may lie in a better
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understanding of the non-linear stability processes,
where the PSE approach would likely be at a decisive
advantage.
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