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Abstract

Résumé

Casalis G., Robinet J.-Ch., Aerospace Science and Technology, 1998, n° 1. 37-47.

The purpose of this paper is to give the first results of a linear stability analysis which has been
applied to the problem of shock oscillations in a transonic diffuser flow. The mean flow is calculated
with a numerical code solving the averaged Navier-Stokes equations, but the proposed stability approach
is limited to the core region where the viscous effects can be neglected. In order to validate the present
approach, the results are compared with Sajben’s experimental results and those numerically obtained
by Liou and Coakley. It is the first time that these published results are compared with a simple linear
stability analysis. As demonstrated below, the shock motion spectra have been correctly reproduced and
the frequencies of 200 Hz and 300 Hz have been clearly obtained for the diffuser lengths of [/h = 13
and [/h = 8.6 respectively. As far as stability of the mean flow is concerned, the temporal amplification
rate is always negative, the mean flow is therefore linearly stable. Finally, the amplitude and phase of
the fluctuating pressure have been compared. The phase for example is in very good agreement with the
experimental results. This can prove that at least in some cases, self-sustained shock oscillations can be
explained and predicted with an inviscid linear stability analysis. © Elsevier, Paris

Keywords: Stability — Shock oscillations — Diffuser.

Une analyse de stabilité linéaire dans un écoulement de tuyere transsonique. L’ objectif de ce papier
est de donner les premiers résultats d’une analyse de stabilité linéaire appliquée au probléme d’oscillation
de choc dans un écoulement de tuyére transsonique. L’écoulement moyen est calculé grice 2 un code
numérique résolvant les équations de Navier-Stokes moyennées. L'analyse de stabilité est limitée 2 la
zone de I’écoulement oll les effets visqueux peuvent étre négligés. Afin de valider cette approche, les
résultats obtenus sont comparés a des résultats issus des expériences de Sajben ainsi qu’a ceux obtenus
numériquement par Liou et Coakley. C’est 4 notre connaissance la premiére fois que ces résultats publiés
sont comparés a une analyse de stabilité. Il est monté que, le spectre de déplacement du choc a été
correctement reproduit et en particulier les fréquences de 200 Hz et 300 Hz ont été clairement obtenues
respectivement pour des longueurs de tuyére de {/h = 13 et [/h = 8.6. En ce qui concerne la stabilité
de I'écoulement moyen, le coefficient d’amplification temporelle est toujours négatif, ce qui en garantie
la stabilit€ linéaire. Pour finir, I’amplitude et la phase de la fluctuation de pression ont été comparés avec
les résultats publiés. La phase, par exemple, est en trés bon accord avec les résultats expérimentaux. Ces
comparaisons montrent qu’au moins dans certains cas, les oscillations de choc auto-entretenues peuvent
étre expliquées et prédites grice a une simple analyse de stabilité linéaire non visqueuse. © Elsevier, Paris

Mots-clés : Stabilité — Oscillation de choc — Tuyere.
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NOMENCLATURE

k wave number

w/2m frequency

U. u streamwise velocity component
V.w vertical (transverse) velocity component
T temperature

P density

VA fluctuation vector (U, V, p, T)

t time

X amplitude of the shock motion

Rp exit pressure to total inlet pressure ratio
l diffuser length (from throat to exit)
h throat height

Subscripts

(). real part

(% imaginary part

(g fluctuation value

() shock value

( h downstream value

(o upstream value

- uniform zone value

(e exit value

Superscripts

T mean value

I - INTRODUCTION

For performance reasons, some engines are built
nowadays with over-relaxed diffusers. However, it has
now been established that in some configurations such
diffusers may exhibit self-sustained oscillations which
constitute major limitations in vehicle performance.
Depending on different parameters such as the diffuser
geometry, the inlet/exit pressure ratio and the upstream
Mach number, different phenomena can occur. The
most important characteristics are the occurrence and
size of a separation bubble just behind the shock and
oscillation of the shock position as well as of the
whole downstream flow.

The purpose of this paper is to present a
new approach initiated at ONERA-CERT in the
Aerothermodynamics Department. This approach
consists in studying these oscillations using a simple
linear stability analysis based on the classical general
small perturbation technique. However the analysis
is restricted to the core region, even if the averaged
flow is calculated using the complete Navier-Stokes
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equations. In effect, the mean flow computation has
been performed with the “FLU3M” code developed at
ONERA (OAal) [1].

The first part discusses the publications forming
the background of this study. In the second part,
the theoretical aspects of the present approach and
the numerical procedure are detailed. Finally, the
stability results are shown in comparison with Sajben’s
experiments and with Liou and Coakley’s numerical
simulations.

I - BACKGROUND OF THE PRESENT STUDY

I1.1 - Diffuser geometry

In the beginning of the 1980’s, a McDonnell
Douglas team, headed by M. Sajben experimentaily
studied shock-wave oscillation in a transonic diffuser
flow [2-4] under natural conditions.

Sajben er al. have used different diffuser types,
essentially two diffuser models labelled G and B
according to Sajben’s terminology. All diffuser have
a rectangular section; they are asymmetric with a flat
bottom wall and a converging-diverging channel with
a maximum 9° divergence angle as top wall. The
diffuser is equipped with many suction slots, so that
the flow can be considered to be two-dimensional, at
least in the middle of the side walls of the channel. A
diagram of the G diffuser model is shown in Figure 1.
The present paper is limited to results for type G. The
relative length of the diffuser is 7/h = 13 where b is
the height at the throat.

Trip Side view

Exhaust J

— —
- et -

Fig. 1. - Diffuser model type G.

II.2 — General descriptions

In these experimental studies, the fluid accelerates
from subsonic to supersonic speed through a sonic
throat, and is abruptly decelerated by a shock-wave
located downstream of the throat. The flow conditions
are essentially characterised by the ratio of the static
pressure at the exit to the total pressure at the
inlet: Rp = p/pt. This ratio determines, among other
properties, the shock strength and the upstream Mach
number M,. The following results are limited to one
value of p: Rp = 0.72, which corresponds to the
most detailed published results.
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Fig. 2. — Shock motion power spectrum, experiment.
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Fig. 3. — Comparisons of pressure fluctuation amplitude (top) and
phase (bottom): left: top wall, right: core flow.

I1.3 - Experimental results

Under some conditions, which depend on the value
of Rp, the flow exhibits natural oscillations with a
well-defined frequency. These oscillations consist of
a shock motion and of the occurrence of oscillations
downstream of the shock. However, no oscillations
have been observed in the supersonic zone.

The shock motion power spectrum represented in
Figure 2, taken from [2], which has been filtered
between 100 and 300 Hz, shows that the most sensitive
frequencies are close to 200 Hz in this case.

Another interesting result is given by the streamwise
variation of the pressure fluctuation. Sajben et al. have
shown that the amplitude of the pressure fluctuation
remains almost constant whereas its phase clearly
increases with respect to x. Figure 3, taken from [§&],
shows this variation of the pressure fluctuation in the
core flow and also near the top wall. In this figure,
the experimental results (closed symbols) correspond
to natural oscillations.

1998, n° 1

I1.4 — Numerical simulations

In the middle of the 1980’s, many numerical
simulations were made by Liou and Coakley’s team
using the same configurations as Sajben’s [5-8].
These simulations consisted in computing the unsteady
averaged Navier-Stokes equations with a classical
turbulence model. They were achieved in two steps:
steady computations give the mean flow and then
the unsteady ones gave the variation of the fluctuating
quantities. The authors investigated the same quantities
as in the experiments: among other things, the
shock motion power spectral density distribution and
the amplitude and phase of pressure fluctuation. In
reference [7], Hsieh er al studied many diffuser
lengths: {/h = 8.66 (case A), 10.06 (case B), 12.08
(case C) and 14.77 (case D). As indicated in Figure 4,
taken from [7], the location of the downstream
boundary has a strong effect on the frequency of the
self-excited oscillation in the transonic diffuser flow.
The oscillation frequency reduces from 300 to 210 Hz
as the downstream boundary varies from {/h = 8.6
to 12.08. This means that the frequency reduces as
the length of the diffuser decreases. For the greatest
length: [/h = 14.7, the trend is reversed: the frequency
of oscillation increases to 310 Hz. According to the
authors, these results suggest that the mechanism
causing the self-excited oscillation changes from cases
dominated by a viscous and convective wave (A, B
and C) to a case dominated by an inviscid acoustic
wave (D).
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Fig. 4. - Power spectrum density distribution: different diffuser
lengths.

On the other band, with regard to the computed
amplitude and phase of the pressure fluctuation,
which have been plotted in Figure 3 (open symbols),
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a major difference appears between amplitude of
fluctuation is significantly higher than the experimental
one. Moreover pressure nodes are observed for
z/h = 4 and z/h = 8.5, whereas unforced experi-
mental diffusers do not present any nodes. But the
greatest difference between calculation and experiment
concerns the phase. The experimental phase in the
core flow increases whereas the numerical phase is
not monotonic and exhibits a jump at z/h = 4.

Taking into account all these published results,
which are not fully understood, a new approach based
on the linear stability theory has been developed
in the Aerothermodynamics Department of ONERA-
CERT. The objectives are first to give a physical
explanation for the observed shock oscillations, and
secondly to compare the stability results with Sajben’s
experimental ones and with those numerically obtained
by Liou and Coakley.

IIl - THEORETICAL ASPECTS

IIL.1 - Basic equations

The proposed stability theory is based on the
classical small perturbation technique. All the physical
quantities g (velocity, pressure...) are decomposed into
a mean value and a fluctuating one:

q=q+gq;- (D
The physical quantities related to the mean flow are
overlined; for example, U is the mean streamwise
velocity component.

Emphasis must be given to the different types of
flow: the mean flow comes from the Navier-Stokes
equations while the viscous terms will be neglected in
the stability equations.

The mean Navier-Stokes flow has been computed
by ONERA with the FLU3M code. The condition
are given by the pressure ratio Rp = (.72 and by
the diffuser length I/ = 13. In order to compare
the stability results with the computations of Liou,
another length (I/h = 8.6) will be considered below.
In the shorter case, the corresponding mean flow will
be simply the previous one truncated. In effect, in the
core region, the mean flow is nearly constant from
x/h = 5 to the exit section.

Let us now give the general equations for the ins-
tantaneous flow denoted by variable ¢ in equation (1).
The two-dimensional diffuser is considered with the
usual coordinate system (z, y). The =z axis refer
to the principal direction of the diffuser and y is
perpendicular to it. The equations of motion for the
instantaneous flow are the Euler equations, the energy
equation written for the total enthalpy and the equation
of state of perfect gas.

¢ Equation of continuity:
dp  9(pl)  9(pV)
ot du dy

=0 2)

G. Casalis, J.-Ch. Robinet

e z-momentum equation:

ou oU ou  oP
el kel Vv 4 2
o TV e T ey T =0 @
e y-momentum equation:
oV oV oV oP
4 pU Ve +-—=0 @
P ot te Ox e Oy + oy @
e Enthalpy equation:
dhl dh, oh;, OP
v +/)U +/)V +~()7 (5)
¢ Total enthalpy dcﬁmt]on
=C T+ (U2+V2) (6)
e Equation of state:
P=prT. (N

The instantaneous shock equations are the Rankine-
Hugoniot relations:

p1 (Via — W) = po (Vg — Wo) (8)
—W.)2 =Py +po (Vo — W)* (9)
Vi =Vao (10)

P+ p1 (Vi

. 1
Cp Tl+ (‘/nl W ) — (/vp Crl)"'"ﬁ (‘/;1,0-Wr‘)2 (l l)

where V,, is the velocity component normal to the
shock, V. is the parallel component and W. is te
velocity of the shock front.

II1.2 — Mean flow calculation

Before describing the stability theory in detail, the
first step is to check that the computed mean flow
is in agreement with Sajben’s experimental results.
Figures 5 and 6 show the experimental and numerical
results respectively for the iso-U contours.

Other comparisons concerning other mean quantities
are given in [9]. From these result, it can be concluded
without any doubt that the computed mean flow, the
stability of which is discussed below, is in very good
agreement with the experimental data.
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Fig. 5. — Mean U contours (m/s). experiment.

Aerospace Science and Technology



Linear Stability Analysis in Transonic Diffuser Flows/

Une analyse de stabilité linéaire dans un écoulement de tuyére transsonique 41

27 y/h

Fig. 6. — Mean U/ contours (m/s), calculation.

II1.3 - Stability theory
I1.3.1 ~ Mathematical form of the perturbation

The decomposition (1) is introduced in equations
(2) to (7). The latter are written in the core region.
Therefore, it must be assumed that the mean flow,
which satisfies the Navier-Stokes equations, is also
a solution of these inviscid equations. The resulting
equations are further simplified by considering that the
perturbation is small, so that the nonlinear fluctuating
terms can be neglected.

Finally, equations (2) to (7) are transformed into
a linear system, whose coefficients are a function of
the mean flow. This mean flow is clearly independent
of time t. Furthermore, according to the experimental
and numerical results (see Figs. 5 and 6), the mean
flow cun be assumed to be weakly dependent on ¥, so
that any mean quantity verifies the relation:

o0q/0y € IG/0x Yu, Vy. (12)
This quasi-one-dimensionality allows us to simplify
the equations again, writing the perturbation in a
wave-like form:

a (e, y. 1) = Refg(a) - B0 (13)
where & is a wave number, w/27 the frequency of
the perturbation and PRe(z) the real part of z. In
this paper, only the case with & real and w complex
is considered. The present approach corresponds to
the so-called temporal theory. Finally, the fluctuating
quantities are written as:

g (v, y, t) = Re g (x) - et R0 (14)
where the imaginary part w; of w is a temporal
amplification coefficient. The physical meaning of
w,; is in accordance with the classical definition of
stability. In effect, when w; > 0 the mean flow is
unstable whereas for w; < 0 the mean flow is stable.

I1.3.2 - Linearised Euler equations

With the mathematical form (14) for the fluctuation,
the linearised Euler equations lead to an ordinary
fourth-order differential system:

C %?— = BZ, (15)
where Z stands for (T, p, u, v). Z is the amplitude
function vector of the perturbation and C and B are
two (4 x 4) matrices with complex coefficients which
are functions of the mean flow and the coefficients w
and k. Their analytical expressions are given in the
Appendix (Al and A2).

1998, n¢ 1

H1.3.3 — Boundary conditions

In all the experimental configurations tested, no
fluctuation has been observed at the throat. For this
reason, the first boundary condition simply states:

Z (0) = 0. (16)

This condition has to be postulated as it cannot be
demonstrated.

In the exit section, the fluctuations do not necessarily
vanish. We only impose that the perturbations remain
finite at this exit section:

Z (l/h) is bounded. (17

III.4 - Discussion
111.4.1 — Eigenvalue problem

The trivial solution Z = ( is obviously a solution of
the stability problem (15)-(17). Moreover, it is the only
one unless this stability problem becomes singular.
Equations (15) with boundary conditions (16) and (17)
therefore appear as a generalised eigenvalue problem.

By calculating the determinant of matrix C
(Appendix Al), it is straightforward to prove that
matrix C is a{)lways invertible except at the mean shock
position (M~ = 1). The first consequence of this is
deduced from equation (15) and boundary condition
(16): there is no fluctuation in the supersonic
zone (from throat to shock). However, the system
of equations (15) is singular at the shock: another
solution, different from the trivial solution, may exist!
To find a non-zero solution, a special procedure must
be established at the shock position. Coming back to
the physics, this procedure can be clearly obtained
with the shock equations (8) to (11). The following
section is devoted to this special treatment.

II.4.2 — Linearised Shock equations

The same small perturbation technique (1) is used
for the shock equations. For example, the perturbed
position of the shock is written as:

r=7F.+ Re[X ¢ (k"""“’t)], (18)

where 7. is the mean shock position and X represents
the shock oscillation amplitude. X is assumed to be
a small quantity. The Rankine-Hugoniot equations
are then linearised by performing a first order
Taylor expansion with respect to X. The quantities
downstream of the shock are denoted by subscript 1
and those upstream of the shock by subscript 0. For
example, q; is the value of the quantity ¢, itself the sum
of the mean and fluctuating quantities evaluated just
downstream of the perturbed position of the shock.
g1 1s expressed as:

e,y t) =(G+qs) (3. + XE)|1,
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with E = e**9=<)_ At first order, the mean quantities
become:

ox
0q1/0x (%) is the right derivative of ¢; with respect
to x calculated in x,. (it is sometimes denoted as
0q,/0x (1)) as well as 9¢o/dx (T.) is the left
derivative of o in #. (denoted as O¢o/0x (7))
Finally, ¢; i1s written as:

§lac+ X = @ (3,) + 2 (2.) XE,

o oq

az,y, t)=q(2:)+ I
As demonstrated in section II.4.1, there is no
fluctuation upstream of the shock. Thus ¢, simply
reduces to:

(Z.)XE+q(Z.) E.

Ja
Wb, y. ) =3 () + S (2) XE.
Finally, the linearized Rankine-Hugoniot relations lead
to an algebraic system of equations:

AZ (z.)=X¢,
Z (Z.) is the vector of the fluctuating amplitudes
calculated at Z. - & is a complex vector and A is
a fourth-order complex matrix, which depends only
on the downstream flow. The analytical expressions of
these quantities are given in the appendix; see (A3) and
(A4). The determinant of matrix A is different from
zero, so matrix A can be inverted. Finally, vector Z
at the mean shock position is known:

Z(z.)=A'X¢ (19)
Its components are given in appendix (AS5). From
equation (19), it is clear that the fluctuation will
be « scaled » by the shock oscillation amplitude X,
which cannot be determined by a linear stability
analysis. At the end of any stability analysis, all
fluctuating quantities are determined uniquely but
with an arbitrary scaling factor. For the present
problem, this property remains true even for the shock
oscillation amplitude.

111.4.3 — Final form of the stability problem

The stability problem has been easily solved
in the supersonic zone. It remains to be solved
in the subsonic zone. The system of differential
equations (15) can be expressed as:

-~ = C'BZ, (20)

for = > z.. This system is associated with the
boundary conditions (16) and (17).

Again, this problem appears to be an eigenvalue
problem: there is the trivial solution Z = 0, X = 0.
A non-zero solution can exist only if the problem
is singular, which implies a particular choice of
the values of the wave number & and the complex
circular frequency w of the perturbation. This choice
corresponds to a dispersion relation between these
numbers, which cannot be determined analytically.
Numerical integration is unavoidable.
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II1.5 - Numerical approach

The fourth-order linear problem (20) has a solution
in a four-dimensional vector space. The solution
therefore has the following form:

4
Z(x)= Z ¢; L (x), (21

j=1

where the four ¢; coefficients are unknown integration
constants, which will be determined by the boundary
conditions. This decomposition will be used in the
remaining part of this section, which is devoted to the
numerical integration of the stability problem. This
integration is achieved in three steps.

The first step consists in remarking that the mean
flow, at a distance from the shock, does not depend on
a. In this « uniform zone », for = > x,,, an analytical
solution of (20) can be calculated:

1

Z(x)= Z e; V- el e, (22)

J=1

where {; and V; are the eigenvalues and eigenvectors
of matrix C~'B respectively (see Appendix A6
and A7). A more detailed analysis of this uniform
zone shows that Re({;) > 0 for j = 1 (only). Since
an exponentially increasing behaviour of Vy-exp ({; z)
is not acceptable with respect to boundary condition
(17), the relation ¢; = 0 must be imposed. The general
solution of (20) then reduces to:
4
Z(x)=) ¢ Zi(x). (23)

J=2

In the second step, equation (20) is numerically
integrated for each vector Z; (j being 2, 3 and
4) by decreasing values of x from the I, of the
uniform zone up to the mean shock position Z.. The
constraint is to require the perturbation to remain
in the three-dimensional vector subspace generated
by Z,, Z3 and Z,. But the computation shows
|Z2]| < ||Zs||, ||Z4]|, so that the subspace becomes
numerically two-dimensional. To avoid this problem,
an orthonormalisation of the Gram-Schmidt type has
been used as in the boundary layer stability problem,
see [10]. Finally, vectors Z,, Z 3 and Z4 are determined
up to the mean shock.

The third step is devoted to the mean shock
position Z.. In effect, in this position, there are two
formulations of Z (x); the first one comes from (23)
and the numerical integration of Z,, Zs and Z,, and
the second one is simply the boundary condition (19).
These two formulations must coincide:

Z (j'p) = Cg Z2 (.’f‘(,) + c3 Z3 (.’f(.) + 4 Z4 (.’YT(.). (24)

For a given circular frequency w,, the unknowns
are the complex constants c;, ¢z and ¢y and
the eigenvalues (A, w;). These eight real constants
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correspond to the four scalar complex relations
associated with (24).

A trial and error method is used to determine the
eigenvalues. An initial guess is made for (A, w; ), then,
using the numerical procedure described, the values of
Zy(%.). Z3(%.), Zy(%.) and Z(F,) are calculated
so that equation (24) can be written. The three first
components of (24) give the values of the constants
¢2, ¢3 and ¢y. The fourth relation (coming from the
fourth component of (24)) must be satisfied if the
values of (A, w;) are correct. Otherwise, the whole
procedure is repeated with another set of values for
(A. w;), modified by a classical Newton procedure
until convergence is achieved.

IV — STABILITY RESULTS

IV.1 - Normalisation

In the linear stability theory, the problem is
obviously linear with respect to the perturbation.
According to (19) the fluctuations are proportional to
the shock amplitude X. In order to be able to compare
the results, a normalisation must be introduced for the
amplitude functions. The fluctuating pressure at the
exist section has been chosen for this normalisation.
As the fluctuating pressure spectrum is not known at
the exit section, uniform law is simply imposed:

M =const VYw, Vy. (25)

P, y)
This means that the fluctuating pressure at the exit
section is given as a ratio of the mean pressure. Of
course, it is also possible to normalise by setting any
fluctuating quantity at any .r-position. For example the
stability results can be adjusted with the first point of
Figure 3.

IV.2 - Shock motion spectrum

Figure 2 shows the experimental shock motion
spectrum. It exhibits a well-defined peak at approxi-
mately 200 Hz. The spectrum calculated by the present
stability theory is shown in Figure 7. It seems that
the proposed stability theory is in good agreement
with Sajben’s experiment: as in the experiment, our
numerical results present a peak close to 200 Hz.
Some differences appear between the numerical and
experimental spectra but they may be due to the
experimental filtering procedure.

For this diffuser length, the numerical simulation of
Liou and the experiment of Sajben seem to be in good
agreement (see Figs. 2 and 4). Nevertheless, Liou’s
team seems to suggest that for this diffuser length,
the mechanism causing the self-excited oscillation
is dominated by the viscous convective wave. The
present stability results seem to indicate a mechanism
without viscosity.

1998, n° 1
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Fig. 7. - Shock motion spectrum, [/f1 = 13.
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Fig. 8. - Shock motion spectrum, [/h = &.G.

Concerning approximation (12), it has been proven,
see [9], that the result of Figure7 is nearly
independent of y, as expected. The results presented
have been obtained for a fixed value of y, but other
values have been tested and presented in [9], and
the results are nearly independent of y in the core
region. For a diffuser length | = 8.6 h, the numerical
simulations of Liou show a shock motion spectrum
presenting a well-defined peak at 300 Hz. Reducing
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Fig. 9. — Frequency versus location of downstream boundary.

the diffuser length, the inviscid stability theory also
gives a peak at 300 Hz as indicated in Figure 8.

The frequency variation as a function of the diffuser
length is shown in Figure 9. The results given in [7]
are shown and the stability results have been added.
For a diffuser length less than or equal to [/h = 13,
the stability theory seems to be in good agreement
with the experimental and numerical results. But the
present stability analysis seems to show a different
physical mechanism (inviscid mechanism) from the
explanations given in [7].

At this point, it is important to note that a simple
acoustic analysis (as given in [3]) cannot predict the
most amplified frequencies at least for [/h < 13.
Furthermore, from Figure 9, it is clear that the peak
of the shock motion spectra is strongly dependent
on the diffuser length. The present linear stability
analysis, limited to the core region, seems to provide
good results for {/h < 13. For longer lengths, the two
boundary layers collapse together upstream of the exit
section and a completely different mechanism may be
then responsible for the shock oscillations.

Like [7], we believe that there are two different
mechanisms, depending on the diffuser length. But,
contrary to [7], we fell that the shock oscillation
can be explained by inviscid fluctuations. However,
it is very clear these inviscid fluctuations are not pure
acoustic modes (the frequencies do not coincide). The
linearised shock equations must therefore play a non-
negligible role as they are taken into account in the
present approach.

IV.3 — Variation of w; with the frequency

An important result of the linear stability theory
provided by the implicit dispersion relation is the value
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of the temporal amplification growth rate w; (and the
value of the wave number k). The following Table 1
gives these values for the most sensitive frequency
corresponding to the two lengths of the diffuser (see
Figs. 7 and 8).

Table 1. — Numerical stability results.

Frequency (Hz) k(m—1) wif2w
200 Hz, x/h = 13 +4.7379 - 99.22
- 4.853 - 99.36
300 Hz, x/h = 8.6 + 4.603 - 110.98
-4.129 - 108.99

For this frequency range, two values of & are found.
There is nothing surprising about this because if the
configuration were perfectly one-dimensional, with V/
exactly equal to zero, there would be no preferred
direction on the y axis, and & and —k would be
solutions of the stability problem. In our case V is
not exactly equal to zero and the symmetry is only
weakly broken.

The wave number % is very low so the perturbation
1s quasi-mono-dimensional as proposed by Culick and
Rogers [11].

Furthermore, the coefficient of temporal amplifica-
tion w; is always negative, as shown in Figure 10.
Therefore, according to the stability definition, the
mean flow is stable.
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|
T I ] | !
0 20 400 600 800 1000

Frequency (Hz)
Fig. 10. — Variation of w;,.
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Thus, if the flow is strictly unperturbed (no pressure
fluctuation at the exit), no shock oscillation and no
perturbation in the downstream zone ust be observed.
This conclusion can be tested by numerical simulation.

IV.4 — Pressure fluctuation

This section is devoted to the comparison between
Sajben’s experimental results, Liou’s numerical results
and the temporal stability results for the amplitude and
phase of the pressure fluctuation. The stability results
are illustrated in Figures 11 and 12.

To make the comparison easier, the scales are the
same as Sajben’s and Liou’s (see Fig. 3). As the
stability theory gives the results within an arbitrary
complex factor, our results are adjusted with the first
experimental point (see Fig. 3) of fluctuating pressure
amplitude.

These results seem to agree with the experimental
ones, and are at least closer to these than Liou’s
numerical results. The amplitude calculated by the
present approach seems smaller than the experimental
amplitude. In particular the latter remains constant
downstream of the position x/h = 4, whereas
the amplitude in Figure 11 decreases rather weakly.
The amplitude in Figure 11 corresponds to the
single frequency f = 200 Hz, though, whereas the
experimental amplitude in Figure 3 covers a large
frequency band.

On the other hand, concerning the phase variation
(Fig. 12), there is very good agreement between
stability results and the experimental data. It is
important to note that this result has been obtained
for a negative frequency. which corresponds to an
upstream travelling wave. This means that the wave
does not reflect on the shock.

The problem of wave reflection by a shock has
been studied in detail by Culik and Rogers in [11].
With their notations, the reflection coefficient |J] is
equal to 0.18 in our case. It corresponds to an incident
wave which is weakly reflected by the shock. Only
low frequencies (below 40 Hz) are reflected. This is
in agreement with the proposed conclusion of the
previous paragraph.

V — CONCLUSION

The goal of this paper is to present a new
approach based on the linear stability theory to
explain and predict the shock oscillations observed in
some transonic diffusers. The comparisons between
experimental data, numerical simulations and the
linear stability analysis of self-excited oscillations can
be summarised as follows:

1998, n° 1

2.4
*10°
1.8 1
1.2

0.6 1

Amplitude of P/Py

0.0

T T

2 3 4 5 6 7 8 9
x/H

4

Fig. 11. — Fluctuating pressure: amplitude.
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o
|

-200
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Fig. 12. - Fluctuating pressure: phase.

e The temporal stability theory seems to predict
some physical characteristics of the flow. The
computation of the shock motion spectrum by the
stability theory is in agreement with the experimental
results of Sajben. Our computations give the same
frequency (200 Hz) as the experiment (I/h = 13) and
tl}e same frequencies as the numerical simulations for
I/h = 13.

e Our analysis shows that the mean flow is always
linearly stable.

e The comparison between our theory and exper-
iment for the fluctuating pressure shows reasonable
agreement. In effect, the phase variation is very well
reproduced for an upstream travelling wave.

Finally, this new study can give some insight into
the physical origin of the observed self-excited shock
oscillations. Furthermore it is interesting to note that
this study can be generalised to the problem of
buffeting.
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APPENDIX

To simplify the notations the following quantities €2

and @ are introduced:

Q= \/k2

+V )]+2A:wv—w2
O=w-kV.

The matrix expressions of differential system (15)
are:

0 U 5 0
rp rT U 0
C= _ (A1)
0 0O 0 P
—T7 _52  _5
c,pU 0 pU pUYV
i Jp o
0 = o mry ik 7
Jp _at oT A
- or Uy T oy tu — o » 0
hrp —ﬁ(% — thrT —p »"f fiw
r ir
G . aUN _
iwCyp—twrp —iwr] (lw‘ - ) W0 iepVo-pll —
L ar

(A2)

The vector and matrix expressions of algebraic system
(19) are:

[0 U, 7] 0
rp, Usi+rTy 25,0, 0
A= _ (A3)
Cy 0 U, 0
L 0 0 0 1]
and
£=6%-& (A4)

wheree &; is defined for ¢ = 0 (upstream) and for
» = 1 (downstream) by:

r

ap, oU;
— U, Gk
ox Uitp (d.L ’ +1w)

95, Op, - = (U . -
ﬁ+T&U7+25;U,:<(‘ *-Ui?Vf'*iW)
¢ = Jdr d-lf_ _ e
JoT;  + (90U, 7
: U, | — — ik & X
Cp I * '(6:1: /kl,-f-uz')
oV,
— 4+ ik U,
i dx + ik J

The components of vector Z at the mean shock
position 7. are:

e UG TG 0T + U =y & (U, —rT)
rw.)= S —
C.pyay (My - 1)
p(E) = 20,U) & + ! l,’(;’_;”'ﬂ{:!"""ﬂlil
Cray (M| -1)
_ 2(,,1»161*(,(~£z+( T & +0rp &
u (%) = —
C.pyay (M} —1)
0 (Fe) =& (A5)

The eigenvalues of C~! B in the uniform zone are:

—iwU+a) )
SR
a2 —-U
= —wlital 8 (A6)
”,2 - (//v—
i
3 4 [] )

The last eigenvalue IS of order 2. The corresponding
eigenvectors of C™1 B are:

1 (a; 7 +7:Ua,sz+~)'
C,k ,)12 7 w
7 (U +iUaQ
Vi=| ka? ( PR o + w) (A7-a)
1 (0T +iTa)
_ﬁ< PRI +w>
] 1 /
(1 Yia —7(/(LQ
Cpk( (12— >
7 0T —1Uu§2
V, = m ( (Iz _ [r* (A7-b)
< oU —iUaQ ~>
- — s tw
kU a? - U
L 1 i

For the double eigenvalue, the eigen subspace is
two-dimensional and is generated by:

f1 T 0
_r 0
V3= T and V, = (A7-c)
1
0
—w
L0 g
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