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Abstract – In this article, the stability of incompressible pipe flows induced by wall injection is investigated. A local linear spatial theory is applied
with a special treatment near the axis due to the choice of the cylindrical coordinates. It shows that the flow is stable near the headwall until it reaches
a critical axial position. The flow becomes unstable downstream for a range of frequencies which increases with the distance to the headwall. Unstable
two-dimensional and also three-dimensional modes are exhibited. Comparison with the available experimental results confirms the existence of amplified
instability waves and the presence of at least some of the predicted modes. 2000 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Several solid-propellant motors exhibit oscillatory behaviours of longitudinal acoustic modes although they
are predicted to be stable by means of conventional methods, such as the acoustic balance. New sources of
acoustic energy have to be found to explain this phenomenon. Since the conditions of pressure and temperature
inside the combustion chamber allow only very few measurements, specific experiments have been designed
for simulating the behaviour of solid-propellant motors. They use cold gas injected through porous walls with
various channel geometries, see for example Brown et al. [1] and Avalon et al. [2]. Therefore, neither high
temperature or diphasic effects nor chemical reactions can occur. The generated simplified flow has been
also numerically studied, see Lupoglazoff et al. [3] and an intrinsic instability mechanism of flows induced
by injection through porous-walled ducts has been discovered which is regarded as a possible cause for the
oscillatory behaviour of the motor.

The pioneer work on this subject is due to Varapaev et al. [4] who treated the case of a two-dimensional
planar geometry. Then numerical investigations led by Lupoglazoff et al. [5] illuminated the aero-acoustic
phenomeon involving the instability mechanism.

In a previous article [6], a two-dimensional linear stability theory has been applied to planar ducts and
the results were successfully compared with measurements performed in a cold-gas experiment with a
parallelepipedic channel. The laminar, incompressible and inviscid mean flow is stable up to a critical abscissa
and becomes unstable downstream. Then due to the good agreement between the experiment and the theoretical
stability predictions and the occurrence of acoustic resonance under some conditions, a scenario and a criterion
have been suggested for the coupling between the intrinsic instability and longitudinal acoustic modes, see [7].
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The purpose of the present paper is to extend this linear stability theory to cylindrical ducts. We first present
the equations, the geometry and the mean flow (or basic flow) of the axisymmetric problem. Then, we pursue the
stability analysis based on the small perturbations decomposition with a normal mode form for the perturbation.
In the next section, we present the numerical resolution method and the treatment of the singularity on the
axis. Section 5 is devoted to the presentation of the numerical results. We mainly present the neutral curves
for two- and three-dimensional modes. As in the planar case, this leads to a critical frequency associated to
a critical distance from the headwall, downstream of which the basic flow is unstable. Finally, we compare
our results with the experimental ones published by Dunlap et al. [8]. Spectra, fluctuation profiles and spatial
amplification are compared to the available results but unfortunately the latter were not designed to explicitly
check out stability mechanism so that no quantitative nor definitive proof of the validity of the theory can be
given.

2. Presentation of the flow and notations

2.1. Geometry and coordinate system

The considered flow is induced by wall injection in a cylindrical channel of radiusa, represented infigure 1.
The channel is limited upstream by a nonporous front wall called the headwall. At the porous walls, the
injection velocity, denoted byVinj , is supposed to be perpendicular to the wall, uniform and constant. We use
the cylindrical system of coordinates (x, r, θ ) with x along the axis of the channel, directed from the headwall
to the exhaust. The origin is chosen at the headwall(x = 0). The corresponding components of the velocity
vector are denoted by (Ux,Ur,Uθ ).

2.2. Governing equations

The study is restricted to incompressible, monophasic and nonreactive flows and the gravity is neglected.
The governing equations are the following nondimensionalised Navier–Stokes equations:
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whereRinj represents the Reynolds number:

Rinj = Vinja

ν
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Figure 1. Streamlines, velocity vectors of the flow and main notations.

with ν being the kinematic velocity. These equations have been made dimensionless by using the reference
lengtha (the radius) and the reference velocityVinj . In the following all the distances are made dimensionless
by using the radiusa, whereas the reference length in [8] is the diameterD = 2a.

The associated nondimensionalised boundary conditions are:

∀r,∀θ,∀t


Ux(x = 0, r, θ, t)= 0,

Ur(x = 0, r, θ, t)= 0,

Uθ(x = 0, r, θ, t)= 0,

∀x,∀θ,∀t


Ux(x, r = 1, θ, t)= 0,

Ur(x, r = 1, θ, t)=−1,

Uθ(x, r = 1, θ, t)= 0.

2.3. Mean flow

An exact solution can be searched by looking for a nondimensionalised Stokes stream function of self-similar
form

9 = xF(r)Rinj
, Ux = x

r
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which gives the fourth order differential equation:
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These equations can be numerically solved and they provide the solution of the complete Navier–Stokes
equations. However, Taylor obtained an analytical solution of the inviscid Euler equations, see [9]:
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Figure 2. Effect of the inviscid Taylor flow approximation on stability results: wavenumber (left part), amplification rate (right part), versus the injection
Reynolds number.x = 10, ω= 50, q = 0.

which is a good approximation of the viscous flow for the Reynolds numbers of interest (Rinj > 1000) and
will be referred to as ‘Taylor flow’.Figure 2shows that the Taylor flow (3) provides stability results, see next
section, which cannot be distinguished from the viscous flow (2) as soon as the Reynolds number becomes
greater than one hundred, typically.

3. Linear stability theory

3.1. Perturbation form

The first step of the stability study requires the small perturbation technique: each quantity is written as a
superposition of a mean quantity (here, the quantity obtained from the known steady Taylor flow) and of a
fluctuating quantity:

(Ux,Ur,Uθ,P )(x, r, θ, t)= (Ux,Ur,Uθ,P
)
(x, r)+ (ux, ur, uθ ,p)(x, r, θ, t). (4)

The fluctuating quantities are assumed to be small relative to the mean ones. The Navier–Stokes equations
and the boundary conditions are rewritten using this decomposition. They are then simplified by taking into
account that the mean flow satisfies them. They are finally linearised by dropping the nonlinear fluctuating
terms.

The linearized boundary conditions are homogeneous, namely:

ux(1)= ur(1)= uθ (1)= 0.

The problem is further simplified by choosing an adequate form for the disturbances. The independence of
the mean flow and of the boundary conditions with respect to the time and to the azimuthal coordinate suggests
an exponential dependence with respect to these coordinates (normal mode).

Concerning the streamwise coordinate, the mean flow is proportional to it so that the normal mode form
eiαx used to obtain the Orr–Sommerfeld equation is not valid a priori. As for the two-dimensional case in [6],
three approaches can be developed: a local strictly parallel theory (OSE: Orr–Sommerfeld Equations), a local
nonconsistent approach in which the termsUr and∂Ux/∂x are kept (LNP: Local NonParallel) and consistent
nonlocal calculations using the ‘Parabolized Stability Equations’ (PSE) with a normalization based on the
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Figure 3. Comparison of the wavenumber and the growth rate, versus the abscissa, obtained by the Orr–Sommerfeld equation (OSE), the local
nonparallel approach (LNP) and the nonlocal parabolized stability equations (PSE).ω= 80, q = 0, Rinj = 4500.

energy of the perturbation, see Herbert et al. [10]. The two first approaches use the normal mode for the
perturbation:

(ux, ur, uθ ,p)(x, r, θ, t)= (ûx, ûr , ûθ , p̂)(r)ei(αx+qθ−ωt), (5)

whereas the third one uses a generalized form of (5), see [10].

A spatial theory is used in agreement with the experimental results:α is a complex wavenumber andω is
real. The local amplification of the instability wave is given by−αi , the negative of the imaginary part ofα,
whereas the wavenumber and the frequency are given byαr , the real part ofα, and byω/2π (the dimensional
frequency isωVinj/(2πa)). Finally, q representing the azimuthal wavenumber is an integer.

The use of local theories is based on the ‘quasi-parallel approximation’, i.e. on the assumption that the mean
flow varies weakly withx over an instability wavelength. Consequently only modes which have a sufficiently
short wavelength can be kept.

Contrary to the LNP approach, the strictly parallel theory seems to give wrong results if we compare its
results infigure 3with the PSE calculations which take into account the nonparallel effects. The same remark
had been made in the planar case and we can notice thatfigure 3 looks like figure 11 in [6]. Thus we use the
LNP approach and keep the termsUr and∂Ux/∂x even if the approach is not strictly consistent.

3.2. Stability equations

The linearised Navier–Stokes equations can be transformed into a first order differential system

d EZ(r)
dr
= L EZ(r) (6)

for the unknown vector of dimension six:

EZ(r)=
(
ûx(r), ûr (r), ûθ (r), p̂(r),

dûx

dr
(r),

dûθ

dr
(r)

)
. (7)

In the system (6),L is a linear operator depending onα, ω, q, Rinj and on the mean flow. Its coefficients
are given in Appendix A.
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The boundary conditions become:

ûx(1)= ûr (1)= ûθ (1)= 0. (8)

3.3. Eigenvalue problem

Since the system comprised of equations (6) and boundary conditions (8) is homogeneous, it is satisfied
by the trivial solution. To admit a nontrivial solution, the problem must be singular. So we have to solve an
eigenvalue problem with an implicit dispersion relation between the parameters:

F(α,ω, q, x,Rinj)= 0. (9)

This relation is solved numerically, see next section, by fixingω,q, x,Rinj , so that (9) provides the
admissible complex wavenumbersα. Then the amplitudeA of the perturbation is obtained by integrating the
local amplification of the wave. For fixed values ofRinj andq, the amplitude is given by:

A(x,ω)=A0e
n with n(x,ω)=

∫ x

x0(ω)

−αi(ξ,ω) dξ. (10)

As it is done in the framework of the boundary layer stability theory, see [11],x0(ω) is the first axial position
where the marginal stability is reached. Although the initial amplitudeA0 may depend onω, nothing is known
about this dependence, so it is actually assumed to be independent of the frequency. Since the theory is linear,
this multiplicative constant is definitely unknown.

4. Numerical procedure

The problem is constituted by the system (6) of order six, associated with the three boundary conditions (8).

Hence, three conditions seem to be missing. Indeed, the singularity of the equations at the axis,r = 0,
induced by the choice of the cylindrical coordinates leads to three ‘compatibility’ relations. By expressing that
the singularity is not physical but due to the choice of the coordinates, so that the physical quantities have finite
values and can be expanded in power series near the axis, three additional conditions can be found. The whole
problem hence becomes well-posed.

Thus, the numerical procedure needs a special treatment near the axis. Below a critical radiusrc, the known
steady flow quantities and the unknown functions, which have finite values in the whole channel, are written
in the form of Taylor series expansions. These expansions are introduced into the system (6). As shown in
Appendix B, all the coefficients can be found as functions of three arbitrary ones, corresponding to the three
physical boundary conditions at the wall which are not taken into account in the expansion close to the axis.

In the domainr 6 rc, the six components of vectorEZ are calculated as a function of three arbitrary
coefficients, sayac, bc, cc. Furthermore, as demonstrated in Appendix B, the dependence with respect to these
coefficients is linear, so we can write:

EZ(r)= ac EF(r)+ bc EG(r)+ cc EH(r). (11)

This form represents six scalar equations in which the elimination of the three unknown constantsac, bc, cc
leads to three compatibility relations, linearly independent, between the coefficients ofEZ(r). These three
conditions are written atr = rc.
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We have used Taylor series expansions of order as high as 20 in the vicinity ofr = 0 but we found that the
first two nonzero terms (their order depends onq) of each unknown function give the same result as higher
order if rc remains small and if the grid contains enough points.

Forr ∈ [rc,1], the system (6) of order six with the three compatibility conditions atrc and the three conditions
at the wall is solved with a subroutine which has been developed for solutions of boundary layer stability
problems, see [12]. The numerical scheme is a fourth order compact scheme presented in [13]. Finally, for
fixed values ofα,ω, x, q,Rinj the equations (6) can be integrated.

To solve the eigenvalue problem, the values ofω,x, q are fixed andα is searched so that the operator is
singular. Our method consists in modifying the boundary conditions as, for example:

ûx(1)= ûθ (1)= 0 and p̂(1)= 1

(so that the trivial solution does not satisfy the boundary conditions), and in iterating the integrations of (6)
with a Newton–Raphson procedure onα until the physical boundary condition̂ur(1)= 0 is satisfied.

The relation p̂(1) = 1 acts as a normalization. In the results which are presented in this paper, the
eigenfunctions are generally related together with this normalization.

The whole procedure has been validated in the well-known case of the stability of the pipe-Poiseuille
flow. For instance, comparisons have been made with the results of Garg et al. [14], Khorrami et al. [15]
and Tumin [16], seetables I and II for two- and three-dimensional modes. Excellent agreement is clearly
obtained.

Table I. Most unstable eigenvalue of the cylindrical Poiseuille flow forq = 0, Re = 10000, ω= 0.5.

Results of Re(α) Im(α)

Garg and Rouleau [14] 0.51998925173 0.02083549388

Khorrami et al. [15] 0.51998925171 0.02083549388

Tumin [16] 0.51998925173 0.02083549388

Present computations 0.51998925173 0.02083549388

Table II. Eigenvalues of the cylindrical Poiseuille flow forq = 0, 1, 2 and 3,Re = 2280, ω= 0.96.

Tumin [16] Present computations

Re(α) Im(α) Re(α) Im(α)

q = 1

1.0635965 0.05122505 1.063596491 0.0512250545

1.466419 0.61187152 1.46641951 0.61187122

q = 2

1.091291 0.07696552 1.09129126 0.076965517

1.3004755 0.71352031 1.3004755 0.71352051

q = 3

1.119773 0.10921440 1.11977346 0.109214397

1.3182548 0.76810573 1.31825481 0.76810600
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5. Results

The described procedure provides different eigenmodes. For each fixed value ofq, more than one mode
can be found but some of them are stable or do not seem physically acceptable. So only one mode has been
retained in each case. For instance, forω = 80, x = 10, q = 0, Rinj = 4500, we take only into account the
most unstable of the four eigenvalues which are given intable III.

The graph of the iso-n factor computed from equation (10), seefigure 4for q = 0, gives a good idea of the
spatial amplification of the flow. The curve plotted with a thick line is the neutral curve, i.e. the location where
the waves become marginally stable; they are amplified downstream. Some observations may be made. First,
near the headwall, the mean flow is linearly stable. The critical value forRinj = 4000 andq = 0 is:

x = 3.18335487, ω= 39.76431, αr = 5.49430685, αi = 0.

Then one can observe that the neutral curve never reaches some low frequencies, which are always damped. At
a givenx-location, the frequencies inside the neutral curve show the range of the amplified frequencies. Finally,
with the definition

nmax(x)= max
ω∈R+

{
n(x,ω)

}
(12)

it can be seen from the curve ofnmax(x) in figure 4that the most amplified frequency increases almost linearly
as the flow approaches the exhaust of the channel.

The corresponding wavelengths are plotted infigure 5. As usual, the modes with low frequencies have a
longer wavelength than modes with higher frequencies. On the other hand for fixedω, the wavelength increases
with increasing axial position. Finally it may be important to note that the dimensional wavelength of the most
amplified wave is of the order of the radius of the channel.

As noticed in the planar case, see [6], the effect of the Reynolds number on the stability results is very weak
as soon as the Reynolds number reaches one thousand, as is apparent infigure 2. This remark will be useful for
the interpretation of the experimental results.

For q = 0 the perturbation is two-dimensional, however three-dimensional perturbations can be found too.
Figure 6compares the neutral curves forq = 0,1,2,3. It can be seen that the ranges of amplified frequencies
are not very different from one mode to the other, except for low frequencies, so that it will be difficult to isolate
them among the experimental results. Furthermore, the curve ofnmax shows that the most amplified frequencies
have the same evolution withx.

Examples of eigenfunctions are given on the right part offigure 8. The shape of the eigenfunction forq = 0
is similar to the one for the planar configuration, see figure 4 in [6]. The main feature consists in a maximum of
the streamwise velocity component located close to the wall. For higher azimuthal wavenumber, other maxima
occur, see for exampleq = 3 in figure 8.

Table III. Eigenvalues of the cylindrical Taylor flow forω= 80, x = 10, q = 0, Rinj = 4500.

αr αi

Mode 1 6.0952945656 −1.0787998140

Mode 2 3.3264285366 −0.1095525589

Mode 3 2.6013223310 0.1322870315

Mode 4 2.4160703725 0.3731054183
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Figure 4. Neutral curve, iso-n factors and curve ofnmax, the maximumn factor of the bidimensional modeq = 0 forRinj = 4000.

Figure 5. Iso-values of the wavelengthλ= 2π/αr and curve ofnmax, the maximumn factor of the bidimensional modeq = 0 forRinj = 4000.

6. Comparison with the experimental results

In order to estimate the validity of our approach, we tried to compare our theoretical results with the
experimental ones published by Dunlap et al. in [8] who used a facility corresponding to the geometry of our



78 J. Griffond et al. / Eur. J. Mech. B - Fluids 19 (2000) 69–87

Figure 6. Neutral curves and curves ofnmax, the maximumn factor of modes for azimuthal wavenumberq ∈ {0,1,2,3}.Rinj = 4500.

Table IV. Experimental configurations of the cold-flow set-up presented
by Dunlap et al. [8] which are used for comparisons.

Mw L/D

Case 1 0.0018 14.3

Case 2 0.0027 9.5

Case 3 0.0036 14.3

study. This article provides data concerning the mean flow which is, as expected, close to the Taylor solution
except close to the axis where some swirl is observed.

Measurements of fluctuations are also made. We will first present the three kinds of data which are available:
spectra, radial shape and streamwise evolution of the fluctuation. We will then make comparisons with the
theoretical predictions for each kind of results.

It must be pointed out that the experiments were not performed in a framework of a stability study so that
most of the measurements cannot be directly compared to our results, as we will explain in the next subsection.
Furthermore, the possible occurrence of acoustic resonance is not clear and we know [7] that this may strongly
affect the unsteady flow field.

Consequently, we cannot exhibit a clear proof of the validity of our approach but we will show that no
contradiction has been found whereas a qualitative agreement is often obtained. Therefore, the occurrence of
the intrinsic instability mechanisms, even if not accurately predicted, seems to be confirmed.

6.1. Available results

Experiments in [8] have been performed for three combinations of injection Mach numberMw and ratio of
length to diameterL/D (but with the same diameter):Mw = 0.0018 andL/D = 14.3 (case 1),Mw = 0.0027
andL/D = 9.5 (case 2), andMw = 0.0036 andL/D = 14.3 (case 3), seetable IV. In each case, the axial, radial
and circumferential fluctuations are plotted at severalx-locations versus the radius but the precision of the plots
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does not allow accurate comparisons of the spatial growth of the instability wave. At the nondimensionalised
abscissax = 10.92, axial velocity spectra are plotted for three different distances from the porous wall.

The main difficulty for the comparison is the measurement of the fluctuation: the theory predicts the
behaviour of isolated waves corresponding to one frequency, whereas the experimental signal proceeds from
hot wire measurements, which are integrated over a large frequency range. Only the spectra can be directly
compared with our results.

Furthermore, for each frequency, all the measurements give probably a combination of azimuthal modes but
it is difficult to know which azimuthal modes are really present in the flow and which initial amplitude they
have. Hence, the comparison is not easy.

6.2. About re-scaling

It must be pointed out that the three considered test cases correspond only to one stability calculation for
the following reasons. First, we analyse the stability of the Taylor flow which is strictly a solution of the Euler
equations and which is only valid for a semiinfinite cylinder, so that the downstream extremity of the channel is
not taken into account by our theory. This means that theoretically there is no difference between cases 1 and 3.
Secondly, after nondimensionalisation, the differences due to the three injection Mach numbers result only in
a range of Reynolds numbers from 4.5× 103 to 9× 103. But as mentioned above, in this range, the stability
results are almost independent of the Reynolds number, seefigure 2. Moreover, the plots are given at the same
nondimensionalisedx-location, so we just need one computation atRinj = 4.5× 103 and we obtain the three
cases by re-scaling.

The radiusa is a = 5.1 cm. For the injection velocity, the wall Mach number is given (seetable IV) and
we know that the experiments were performed with nitrogen at approximately 0.21 MPa with an average
temperature varying over the range−16 to+13◦C, so we choose the velocity of soundc= 340 m s−1.

6.3. Comparison of the spectra

Spectra are given at the nondimensionalised abscissax = 10.92. For each azimuthal modeq, the computation
of then-factors at this abscissa leads to the functionn(ω). Then the spectra are provided in terms of the physical
frequencyf ∗ = ωVinj/(2πa) by

S(f ∗)= (A0e
n(f ∗))2.

Since the channel radius used for the three spectra is the same, the theory predicts that the amplified
dimensional frequencies are proportional to the injection velocity. Measurements not too close to the wall
(spectra close to the wall seem to be modified by nonlinear phenomena, as discussed later, so they are not
directly useful) confirm this expectation: for a wall Mach numberMw = Vinj/c = 0.0018 the most amplified
frequency is 140 Hz, it is around 230 Hz forMw = 0.0027 and 280 Hz forMw = 0.0036. The frequency of
case 2 for which the channel has a shorter length is not exactly proportional. Does this length affect the intensity
of the swirl close to the axis? Are some acoustic effects present?

The comparison of the experimental spectrum of case 1 with the theoretical amplitude for different azimuthal
modesq is given infigure 7. Since the constantA0 is unknown, the absolute value of the amplitude has no
meaning. Furthermore, the figure is plotted with the same constantA0 for eachq-mode.

For case 1,figure 7 indicates a shift of frequency of almost 35 Hz(25%) between the experimental value of
the most amplified frequencyf ∗ = 140 Hz and the theoretical one forq = 0 (175 Hz). This shift grows very
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Figure 7.Comparison between experimental and theoretical spectra of the square of the axial fluctuation forx = 10.92 andr = 0.75 (r = 1 corresponds
to the porous wall) for three injection Mach numbers. Only the frequencies are dimensionalised (in Hz).

weakly withq. Many explanations for this shift are possible: the small swirl phenomenon present near the axis,
the influence of the acoustics, imprecisions in the sound speed and in the Mach number, etc. Furthermore, the
theoretical range of amplified frequencies is a bit thicker than the experimental one.

As predicted, the two other comparisons for cases 2 and 3 lead to the same conclusions. It must be
emphasized that the spectra exhibit a bump of amplified frequencies, as predicted by an instability mechanism
and that they do not exhibit peaks as would be expected by an acoustic phenomenon. The results are therefore
qualitatively encouraging.

6.4. Axial, radial and circumferential eigenfunctions

Again at the locationx = 10.92, the authors of [8] give the axial rms velocity fluctuations. As explained
before, the measured velocity fluctuations are not given for one frequency (or a small frequency band) but
for a large (unknown) frequency range. Furthermore, for each frequency, it is not possible to distinguish
experimentally the azimuthal modes. But although all the frequencies and azimuthal modes are present in
the graphs of velocity fluctuations, we can try to compare them with the eigenfunctions of the most amplified
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Figure 8. Comparison between the experimental rms axial velocity fluctuations profile (fraction of the axial centerline velocity versus nondimen-
sionalised radius) and theoretical axial eigenfunctions for the most amplified frequency corresponding toω = 92 and for a less amplified frequency

corresponding toω= 70.x = 10.92, Rinj = 4500, Mw = 0.0018 (case 1).

frequencies of eachq mode. We plot the eigenfunctionÊu(r) and notA0
Êu(r)en and we choose the normalization

p̂(1) = 0.15 so that the amplitude of the eigenfunctionûx(r) of the modeω = 92, q = 0 matches the rms
fluctuation. Of course we use the same normalization for all the eigenfunctions offigures 8and9.

First, the main feature of the eigenfunctions seems to appear on the graphs of the rms axial, radial and
circumferential velocity fluctuations given infigures 8and9: a maximum of high amplitude near the wall.

Secondly, the experimental and theoretical ratio of the amplitudes of axial, radial and circumferential
fluctuations, which are independent of the normalization for fixedω,q, agree quite well .

Third, as explained in Section 6.2, the velocity fluctuations should have the same shape in the three cases
(only the initial amplitudeA0 can change). This is well confirmed for the three cases.

Finally, Dunlap et al. [8] notice at sectionx = 10.92 a phenomenon which cannot be explained by the present
linear theory. For cases 1 and 3 the most amplified frequency (f wall

max) measured close to the wall (r ≈ 0.9) is

twice what it is (f cl
max) in the rest of thex-section (r 6 0.75), i.e.f wall

max = 2f cl
max. Nonlinear phenomena can be

suspected in so far as the amplitudes for cases 1 and 3 are very large close to the wall (3% of the centerline
mean velocity).

6.5. Spatial amplification

Figures 8–10 and 16–18 of the article [8] have to be discussed too. The normal mode form (5) implies
that longitudinal, radial and circumferential components of the velocity fluctuations have the same exponential
evolution with respect tox in the linear domain. To confirm this, we look at the closest points to the wall (where
the instability wave has the largest amplitude and can be distinguished from the environmental noise). We plot
in figure 10thex-evolution for case 3 of the fluctuations atr = 0.95 extracted from the published figures in [8].
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Figure 9. Comparison between the experimental rms radial and rms circumferential velocity fluctuations profiles (fraction of the axial centerline
velocity versus nondimensionalised radius) and the radial and circumferential eigenfunctions for the most amplified frequency corresponding toω= 92
for x = 10.92. The circular symbols of experimental results are obtained forMw = 0.0018 (case 1) whereas the square ones correspond toMw = 0.0036

(case 3).

First, it is clear that longitudinal, radial and circumferential components of the velocity fluctuation behave the
same way from different initial amplitudes.

As before, fluctuations are obtained by an integration over the frequencies and the azimuthal modes.
However, the spatial amplification of the most amplified frequency (which changes withx) for q = 0 may
be representative. So we plotA0 exp(nmax(x))/x (see equation (12)) infigure 10with A0= 1/2000 (we divide
exp(nmax) by x because the velocities are nondimensionalised with the axial centerline velocity in [8]). It
must be pointed out that the measurements give not only the eigenresponse but also fluctuations which are not
instability eigenmodes. The theoretical results exhibit a very rapid and large amplification which is most likely
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Figure 10.Experimental spatial evolution of the ratio of the fluctuation amplitude to the centerline axial velocity forMw = 0.0036 (case 3) andr = 0.95.
Comparison with(1/2000)exp(nmax(x))/x for q = 0. Forx 610.92, the flow is laminar whereas forx >13.28, it is turbulent.

related to the laminar-turbulent transition since measurements [8] show that the flow is laminar forx 6 10.92
and turbulent forx > 13.28.

The experimental results plotted infigure 10 seem to indicate that some instability modes are present
close to the headwall and that they decay inx up to a location which is in the vicinity of the theoretical
neutral curve. However, additional comparisons with the theory may be not relevant due to our assumption
A0(x,ω)= constant.

Finally, the agreement between theory and experiment is not striking but the linear domain where the
exponential law could have been validated is short and the beginning of the amplification seems correctly
predicted.

7. Summary

The study consists in a local linear stability analysis applied to the nonparallel incompressible flow induced
by wall injection in a cylindrical channel. The quasi-parallel approximation is assumed but some terms remain
in the final stability equations, such as the radial mean velocity, which would have been neglected in a strictly
consistent approach. However, the comparison with nonlocal calculations proved as in [6] that these terms must
be kept to provide good results.

The problem to solve is an eigenvalue problem with an implicit dispersion relation between the axial
wavenumber, the local axial amplification, the frequency, the azimuthal wavenumber, the Reynolds number
and the streamwise coordinatex through the similarity solution for the base flow. The integration of the system
of stability equations is required to compute the dispersion relation but it needs a particular treatment near the
axis due to the choice of the cylindrical coordinates.

The analysis shows that the flow is stable near the headwall until it reaches a critical axial distance form
the headwall nondimensionalized with the radiusa of almost 3.2 for a dimensionless pulsation close to 40
(nondimensionalized with the injection velocity divided by the radiusVinj/a) and a Reynolds number of order
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4000 and becomes unstable downstream. This first instability occurs for a two-dimensional mode but our results
show that three-dimensional modes may be also amplified, at least for low values of the azimuthal wavenumber.

Comparisons have been made with some available experimental results published by Dunlap et al. [8].
The comparisons of the spectra agree quite well, when a shift in frequency is taken into account. The main
features of the eigenfunctions and of the spatial amplification seem to be the same as the theoretical predictions.
Therefore, it can be assumed that intrinsic instability mechanisms are really present in axisymmetric problems
and explain the experimental flow behaviour as they do in the case of planar ducts, see [6].

These instability mechanisms, as seen in [6], seem to provide possible sources of acoustic energy in porous-
walled ducts. This phenomenon may be therefore useful to understand oscillatory behaviour of the flow inside
solid propellant motors.

Appendix A

As explained in Section 3.2, the linear stability equations can be written:

d EZ
dr
= L EZ, EZ =

(
ûx, ûr , ûθ , p̂,

dûx

dr
,
dûθ

dr

)
,

where

L=



0 0 0 0 1 0

L21 L22 L23 0 0 0

0 0 0 0 0 1

L41 L42 L43 0 L45 L46

L51 L52 0 L54 L55 0

0 L62 L63 L64 0 L66


, (13)

L21 = −iα, L22=−1

r
, L23=− iq

r
,

L41 = Uriα, L42=− γ ′

Rinj
− ∂Ur

∂r
+ Ur

r
, L43=− iq

Rinjr
2
+Ur

iq

r
,

L45 = − iα

Rinj
, L46=− iq

Rinjr
,

L51 = γ ′ +Rinj
∂Ux

∂x
, L52=Rinj

∂Ux

∂r
, L54=Rinjiα, L55=RinjUr − 1

r
,

L62 = −2iq

r2
, L63= γ ′ + 1

r2
+ Rinj

r
Ur, L64= Rinjiq

r
, L66=RinjUr − 1

r
,

(14)

with γ ′ = α2+ q2/r2+Rinji(αUx − ω).
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Appendix B

The detail of the treatment of the central axis is the following. The unknown functions are written in the form
of a Taylor series expansion 

ûx =∑∞n=0unr
n,

ûr =∑∞n=0 vnr
n,

ûθ =∑∞n=0wnr
n,

p̂ =∑∞n=0pnr
n.

(15)

Likewise, the known steady flow is expanded as
Ux = f (x)∑∞n=0Anr

n,

Ur =∑∞n=0Bnr
n,

Uθ = 0.

(16)

(These expressions can be used for Poiseuille and Taylor flows.)

The expansions are introduced in (6). For each order, the four equations obtained from (6) can be written:

• SystemS0: 
−q2u0= 0,

v0+ iqw0= 0,

−(1+ q2)v0− 2iqw0= 0,

2iqv0− (1+ q2)w0= 0.

(17)

• SystemS1: 
(1− q2)u1= 0,

2v1+ iqw1=−iαu0,

−q2v1− 2iqw1= 0,

2iqv1− q2w1−Rinjiqp0=Rinjw0B0.

(18)

• SystemSn+2, for all n> 0:

(α2− iRinjω)un + iRinjαpn +Rinj
∑n
j=0

(
(f ′(x)+ iαf (x))Ajun−j

+ (n+ 1− j)Bjun+1−j + f (x)(j + 1)vn−jAj+1
)= ((n+ 2)2− q2)un+2,

(n+ 3)vn+2+ iqwn+2 =−iαun+1,

((n+ 2)2− (1+ q2))vn+2− 2iqwn+2−Rinj(n+ 1)pn+1=Rinj
((

α2

Rinj
− iω)vn

+∑n
j=0(iαf (x)Aj vn−j + (n+ 1)Bjvn+1−j )+ (n+ 1)v0Bn+1

)
,

2iqvn+2+ ((n+ 2)2− (1+ q2))wn+2−Rinjiqpn+1=Rinj
((

α2

Rinj
− iω)wn

+∑n
j=0(iαf (x)Ajwn−j + (n+ 2− j)Bjwn+1−j )+w0Bn+1

)
.

(19)

Some remarks can be made about these systems:
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• EachSi system contains the coefficientsui, vi, wi andpi−1 and others of lower order. So eachSi gives
ui, vi, wi andpi−1.
• The system obtained from (19) with the unknown coefficients (ui, vi,wi andpi−1) has a determinant of

value of

1= (i2− q2)(i2− (q + 1)2
)(
i2− (q − 1)2

)
which implies that whatever be the azimuthal wavenumberq the system becomes singular for three orders.
This shows that the whole problem constituted by the expansions is singular. SystemsSi are degenerated
of order 1 at three orders so that three coefficients of the expansion remain necessarily arbitrary. Indeed,
the three physical conditions are given at the wall and are not used in the expansion near the axis. So it is
consistent that three coefficients of the development take arbitrary values.

With q as a parameter, calculations give:

• q = 0

∗ (17)⇒ u0 is arbitrary,v0=w0= 0.
∗ (18)⇒ u1= 0, p0 andw1 are arbitrary andv1=−iαu0/2.
∗ ∀n> 0: un+2, vn+2, wn+2 andpn+1 are solutions of (19).

• q = 1

∗ (17)⇒ u0= 0, v0 andw0 are related byv0+ iqw0= 0: v0 orw0 is arbitrary.
∗ (18)⇒ u1 is arbitrary,v1=w1= 0, p0 satisfiesp0= iw0B0.
∗ (19) forn= 0⇒ u2 is given by the first equation,p1 is arbitrary,v2 andw2 are related by: 5v2+ iw2=−iαu1,

2v2− 2iw2=Rinj
[(

α2

Rinj
− iω)v0+ v0B1

]
.

(20)

∗ ∀n> 1: un+2, vn+2, wn+2 andpn+1 are solutions of (19).

• q > 2

∗ ∀n, n+ 26 q − 2: un+2= vn+2=wn+2= 0 andpn+1= 0.
∗ uq−1= 0 andpq−2= 0; vq−1 andwq−1 are related byvq−1+ iqwq−1= 0: vq−1 orwq−1 is arbitrary.
∗ uq is arbitrary,vq =wq = 0, pq−1 satisfiespq−1= iw0Bq−1 .
∗ uq+1 is given by the first equation of (19),pq is arbitrary,vq+1 andwq+1 are related by: (q + 4)vq+1+ iqwq+1=−iαuq,

2qvq+1− 2iqwq+1 =Rinj
((

α2

Rinj
− iω)vq−1+∑q−1

j=0(iαf (x)Ajvq−1−j + qBjvq−j )+ qv0Bq
)
.

(21)

∗ ∀n, n+ 2> q + 2: un+2, vn+2, wn+2 andpn+1 are solutions of (19).

Finally, as predicted, three coefficients remain arbitrary in any case. Furthermore, all the coefficients linearly
depend on the vector constituted by the three arbitrary constants.
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