
4, France

personic
peed when
ecays are

ehaviour
ves and
ic Kelvin–
becomes

nant noise
ave been
ns that
structures

eory. The
res and

egard the
on from
instability
plified

supersonic
uctuations
nt study is

erties of
European Journal of Mechanics B/Fluids 23 (2004) 367–379

Exponential-algebraic transition in the near-field
of low supersonic jets

Christophe Millet∗,1, Grégoire Casalis

ONERA-Toulouse, Aerodynamics and Energetics Modeling Department, 2, avenue Édouard Belin, BP 4025, 31055 Toulouse cedex

Received 12 July 2002; received in revised form 1 September 2003; accepted 5 November 2003

Abstract

The paper is concerned with the transition from exponential to algebraic cross-stream decay of instability waves in su
axisymmetric cold jets. The cross-stream structure of these waves is analysed for phase velocities close to the sound s
the streamwise inhomogeneities of the mean flow are characterized by a small parameter. It is shown how algebraic d
completely compatible with the features of the near-field, and a selection criterion for the occurence of such a b
is given. Near-field pressure fluctuations are then determined as functions of azimuthal properties of instability wa
control parameters. In some cases, where the dominant contribution to the sound generation is due to the axisymmetr
Helmholtz instability mode, algebraic decays are not confined in the core region of the jet and the acoustic wavelength
larger than the envelope scale.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

For perfectly expanded jets, many measurements have shown that large-scale coherent structures are domi
producers in supersonic jets (see Seiner and Ponton [1], Troutt and Mclaughlin [2], Lau et al. [3,4]). These results h
confirmed by theoretical studies (Mankbadi and Liu [5], Tam and Burton [6,7]) which revealed that only contributio
arise from these structures can be retained in the aerodynamic sound integral. The shape distribution of the coherent
responds to the local profiles of the mean shear flows and may be calculated by using the hydrodynamic stability th
fine-grained turbulence plays an indirect but crucial role in that it controls the development of the coherent structu
consequently its emitted sound.

An approximate picture of the physical mechanism by which the large turbulence structures generate sound is to r
instability wave as a wavy wall (Tam [8]). This analogy suggests that the direction of the most intense noise radiati
highly supersonic jets can be estimated by using the Mach angle relation based on the speed of the most amplified
wave (Tam et al. [9]). However, most of previous works are confined to highly supersonic jets, for which the most am
instability wave has a supersonic phase velocity (relative to ambient sound speed) and do not consider the subsonic–
transition. In some cases, such a transition gives rise to acoustic radiation: the cross-stream behaviour of pressure fl
becomes dispersive and the cross-stream decay of the amplitude changes from exponential to algebraic. The prese
further motivated by the fact that, this exponential-algebraic transition may depend strongly on the azimuthal prop
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instability waves and control parameters. Accordingly, there is no reason to consider only the most amplified instability wave
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for the determination of the dominant noise source for low supersonic jets.
The primary goal of this work is to examine the phenomenon of exponential-algebraic transition of pressure near

low-supersonic jet flows by resorting to the linear stability theory. Recently, numerical simulations of supersonic jets a
sound fields have shown that linear stability can be used to estimate near-field sound pressure levels (Freund et al. [10
et al. [11]). In Section 2 we study the decay of near-field fluctuations in a convectively unstable axisymmetric jet. We
the discussion to the Kelvin–Helmholtz instability. It is easy to write down a general integral solution to the problem out
jet. But there is no universal way in which the exponential-algebraic transition is achieved, and indeed much of the e
here is to show that the transition depends on the azimuthal properties of instability waves. In this paper, it is shown
exponential-algebraic transition is a sufficient condition for acoustic radiation in the far-field. Physically, when such a tr
arises, the disturbances associated with the flow-instability process extend from the jet all the way to the far field. The
is global in nature. In Section 3 the numerical formulation used to solve the governing stability equations is describe
a spectral collocation discretization through a multiple domain technique has been used for the calculations. This a
which has been developed by Khorrami et al. [12], Malik [13] among others, allows us to include the viscosity terms w
necessary. Numerical results are then presented in Section 4 for cold supersonic jets.

2. Near field structure of instability waves

2.1. Basic formulation

The complex fluctuationsφ = (u,p) around a given mean jet flow̄φ = (ū, p̄) are assumed to be governed by lineariz
inviscid, compressible equations of motion. Here the functionsu andp are the velocity and the pressure, respectively. We
user0, the radius of the jet at the nozzle exit,u0 the jet exit velocity andρ0 the jet exit density as length, velocity and dens
scales of the problem. The time and pressure scales are given byr0/u0 andρ0u2

0, respectively. In the sequel, we shall assu
that the mean pressure is constant in the domain of motionΩ and the product of the mean velocity by the mean density belo
to the class consisting of solenoidal vectors (that is,ρ̄(∇ · ū) + ū · ∇ρ̄ = 0) vanishing far away from the center of the jet flo
Thus, in dimensionless form, the perturbation(u,p) satisfies the following equations

∂u
∂t

+ (ū · ∇)u + (u · ∇)ū = − 1

ρ̄
∇p, (2.1a)

∂p

∂t
+ (ū · ∇p) = − 1

M2
(∇ · u), (2.1b)

in the class consisting of vectors(u,p) satisfying a radiation condition or boundedness condition outside the jet. Here t
exit Mach numberM = 1/

√
γ p̄, γ beeing the ratio of specific heats, is a control parameter.

The non-turbulent fluid outside the jet is assumed to be inviscid so that the distribution of fluctuations is a solutio
above equations outside the jet. In this paper, the discussion is restricted to instabilities arising from purely inviscid mec
as the Kelvin–Helmholtz instability waves. It follows that Eqs. (2.1a), (2.1b) can be used in the whole of the domainΩ with
the exception of regions where the inviscid approximation fails to represent the cross-stream behaviour of instabilit
For incompressible shear flows, Le Dizès et al. [14] have shown that this phenomenon occurs in large viscous regions
instability waves are damped. From a numerical point of view, weakly viscous effects may be taken into account to
the cross-stream behaviour of fluctuations in these regions. As the governing equations can be solved in a close for
the jet, another possibility is to use the contour deformation method, as described by Tam and Morris [15].

In the present study, we are interested in the cross-stream structure of solutions to the above problem for a we
parallel axisymmetric jet. Thus, the properties of the mean flow are assumed to be functions of a slow space variableX = εx,
whereε is a small parameter characterizing the streamwise inhomogeneities of the medium andx denotes the streamwis
direction. With respect to a cylindrical coordinate system(x, r, θ) centred at the nozzle exit, the mean velocity may
represented analytically in the form

ū : (x, r) 	→ (
ū(X, r), εv̄(X, r),0

)
. (2.2)

Now let us consider the near-field region around the jet. Outside the jet, the streamwise componentū is identically zero and the
mean radial velocity componentv̄ can be calculated by integrating the mean continuity equation. Following Tam and Burto
the numerical value ofrv̄ is regarded as a constant and given byv̄∞. It follows that the dimensionless mean fluid density
constant and uniquely determined from the control parameters, such as the Mach numberM or the temperature of the jet exit.
will be denoted byρ̄∞. Such assumptions imply that the linear operator associated with (2.1a), (2.1b) is homogeneous
variableX. Homogeneity allows us to make extensive use of Fourier–Laplace transforms to reduce the problem (2.1a
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to an ordinary differential equation outside the jet. Another point of view consists in using the WKBJ approach to describe the
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instabilities. Since the flow is slowly evolving on the streamwise scaleX, it is legitimate to decompose all solutions into loc
plane waves at any streamwise stationX. Note that the latter mathematical description is known to be valid only inside a
the immediate vicinity of the jet (a proof is given by Tam and Morris [15]).

2.2. Cross-stream structure of local plane waves

The starting point of the analysis is the problem defined by (2.1a), (2.1b) and (2.2) which describes both the instabili
behaviour and the acoustic near and far field, with some conditions forφ on the boundary ofΩ . Here, we are interested in th
manner in which the near-field decay changes from exponential to algebraic around a locationX – and more generally we ar
interested in the cross-stream structure of solutions to (2.1a) and (2.1b) outside the jet, forε → 0.

Since the jet is assumed to be axisymmetric, the complex fluctuations can be Fourier-decomposed into azimuth
Eqs. (2.1a), (2.1b) being invariant under arbitrary time translations, it is legitimate to seek solutions of the form

φ(x, r, θ, t) = 1

2π

∫
Lω

φn(x, r,ω)exp(inθ − iωt)dω, (2.3)

wheren is an integer andω is the frequency; the integration is performed along the pathLω in the complexω-plane as sketche
in Fig. 1. Since azimuthal and temporal dependances are specified throughout the entire flow, one has to solve a pr
which n andω are now parameters.

Let X andR be defined byX = δX(ε)x andR = δR(ε)r , whereδX andδR are order functions. Then by eliminating a
other dependent variables in favour ofun, the streamwise component ofun, one can find the equation to be solved outside
jet

δ2
R

(
∂2

∂R2
+ 1

R

∂

∂R
− n2

R2

)
un +

(
k2
0 + δ2

X

∂2

∂X2

)
un = F(εv̄∞)un, (2.4)

which will be written asδ2
RL0un + L1un = Fun , whereL0 is the transverse part of the Laplace operator andk0 is defined by

k2
0 = ρ̄∞M2ω2. The full expression forF is not of first importance here; it is given in Appendix. It seems natural to introd

for the purpose of the analysis, the one parameter family of local variablesrα = Rεα/δR(ε), with α � 0 and to consider a
local asymptotic approximation ofun in the vicinity of the jet. Here,L0 does not depend onε, while for any (sufficiently
differentiable)ε-independent functiong, the linear operatorF is such thatFg = O(εδ2

R). For slowly divergent free shear flow
δX may be a measure of nonparallel basic flow effects, for instanceδX(ε) = ε. Then, the degeneration of (2.4) in the loc
variablerα only depends on the order of magnitude of‖L1un‖ for α = 0. For 0< α < 1, the family of local variables plays th
role of a family of intermediate variables.

Fig. 1. Locus of spatial branch in complexk-plane asω moves alongLω contour in complexω-plane for smallωi . The branch cutK for the
function λ join the critical points forω = ω∗ . Dashed line: analytic continuation into the second sheet of the Riemann surface (corresp
to solutions which become exponentially large asr → ∞).
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We will first consider the caseα = 0. As discussed in Section 2.1 the asymptotic response can be given by the standard form
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of the WKBJ approximation (see Bender and Orszag [16]) which describes instabilities of weakly non-parallel flows:

un ∼
q∑

j=0

δj (ε)Aj (X)unj (r;ω)exp

(
i

ε

X∫
0

k(s;ω)ds

)
, (2.5)

where δ0 = 1, δj (0 < j < q) are elementary gauge functions andk = kr + iki denotes a local (complex) wavenumb
originating in the upper half of thek-plane when the imaginary part ofω goes from a large positive value to zero. The leadi
order amplitudeA0(X) is determined at another order inε, from matching conditions to the solution far away from the jet, a
un0 is a suitably normalized function which gives the cross-stream behaviour of pressure fluctuations in the vicinity of
A cause of difficulties is the appearance of termsδj in the formal expansion of which the order of magnitude is not sugge
or dictated by the differential equation or the boundary conditions. However, these functions can be determined by
intermediate matching principle, as described by Tam and Burton [6,7]. Here, the originX = 0 is the axial location of the sourc
on the jet centreline.

By introducing the expansion (2.5) forun into Eq. (2.4) withα = 0, one finds an equation satisfied byun0 outside the jet,

L0un0 − λ2un0 = 0, (2.6)

whereλ is given by the irreducible polynomial

P(λ, k) = λ2 + (
k2
0 − k2)= 0, (2.7)

which defines an algebraic functionλ(k;ω) in a domain of the complexk-plane. Using the new variablez = iλr , Eq. (2.6)
reduces to the Euler–Bessel equation in thez-complex domain. Two linearly independent solutions of (2.6) are then give

then-th-order Hankel functions of the first and second kind,H
(1)
n (z) andH

(2)
n (z), respectively. The passage to the general c

of an arbitrary positive value forα causes no difficulty: one must consider the transformationr = rα/εα in the definition ofz.
In the following, we exclude situations where the leading-order of Eq. (2.4) reduces toL0un0 = 0 by reducing the analysis t
the plane of the complex variablek with the exception of neighbourhoods of branch points±k0.

Let us consider now the algebraic function determined by the polynomial (2.7) in the domainE obtained by removing the
singular points from the completek-plane, that is, the points±k0 = ±√

ρ̄∞ωM and∞. Then at every pointk ∈ E this equation
has two distinct finite rootsλ1 andλ2 = −λ1, associated with regular branches. In the strictly parallel case, the real part

branch, let us sayλ1(k;ω), can be taken positive, so that only then-th-order Hankel function of the first kind,H(1)
n , satisfies

the boundedness condition on the boundary ofΩ . Such a choice will be highlighted in Section 2.4. It implies branch cutsK in
thek-plane as shown in Fig. 1 and such that

−π/2 � argλ < π/2. (2.8)

Let us note in connexion with this, that the singular points±k0 go to infinity when the real partωr of the frequencyω moves
from zero along the contourLω. Then, we arrive at the result, that it may be possible to find at least one pointk∗ in thek-plane
where a spatial branch meets a branch cut as shown in Fig. 1. Note also that it is clearly impossible to find such a po
shear layer thickness is zero since the model would fail to satisfy causality or if the Mach numberM is zero.

For weakly non-parallel flows, the local wavenumberk(X;ω) traces a pathΛ in thek-plane from the pointk(0;ω) which
passes through the real axis, as shown in Fig. 2. One has to remember that, as the wave propagates downstrea
growth rate−ki (X;ω) reduces. This is because the flow slowly diverges so that the transverse velocity gradient is gr
reduced. This path and the singular points continuously change asω moves alongLω, or with the continuous change of contr
parameters. More detailed investigation shows that only singular points ofλ, that is the points not belonging to the domainE ,
can act as an obstacle to the deformation of the pathΛ. Hence it is natural to expect, that the character of the permutation o
functionsλ1 andλ2, is determined by the distribution of the singular points on the sphere of the complex variablek. Therefore,
we arrive at the following criterion for exponential-algebraic transition:if at least one spatial branchk(X;Lω) meets the branch
cutK in the complexk-plane, then the cross-stream decay of the amplitude of pressure fluctuations is algebraic in a sub
of Ω .

This result follows by the permutation of branches, using the branch cutsK as defined above. For every intersection pointk∗,
the real part ofλ is zero and|k∗

r | < k0). Then, taking the intermediate limit of the Hankel function,rα beeing fixed, we find

lim
rα

∣∣H(1)
n (iλr)

∣∣∼ |exp(−λr)|
|√iλr| . (2.9)

It follows that the cross-stream decay ofun0 is algebraic fork∗. In the case where no intersection point is found, the cr
stream decay is exponential for every locationX since the real part ofλ1 is positive and no travelling wave is generated in
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Fig. 2. Locus of spatial branch in complexk-plane asω moves alongLω contour, for two locationsX0 andX > X0. In the displacement o
the pointω along theLω contour from the pointω0, the pathΛ0 is continuously deformed into the pathΛ. The algebraic functionλ(k;ω)

continuously changes with the continuous change of the position of the pointk on the Riemann surface.

cross-stream direction. In order to have a continuously change of the functionλ with the continuous change of the wavenu
ber k, one has to define it not on thek-plane, where it is many valued, but on a 2-sheeted Riemann surface, to every p
which correspond one value of the functionλ.

In gradually displacing theLω contour until the real axis, the imaginary parts of singular points±k0(ω) go to zero and the
parts of branch cuts not belonging to the imaginary axis coincide with the segment consisting in neutral waves (ki = 0) with
supersonic phase velocities (|kr | < k0). The length of this segment is an increasing function of the Mach numberM , and is zero
in the incompressible flow assumption. Then the criterion can be expressed in terms of phase velocities of neutral wav
for a given integern, the cross-stream decay of pressure fluctuations is algebraic only if neutral waves have supersoni
velocities(relative to the ambient sound speed).

In the following section, we show that a similar transition holds in the cross-stream direction when the phase veloci
neutral axisymmetric (n = 0) instability wave is subsonic, in a way which is given by a turning-point problem. It is shown
the feature of the near-field is completely compatible with the asymptotic expansion (2.9) valid in the intermediate reg
with the far-field region.

2.3. A turning-point problem

In this section, we study the cross-stream behaviour of local plane waves in the annular region|λ| = O(1), |λ| �= o(1)

centered at the pointk0 at the limitωi → 0. We show that the analysis of Eq. (2.6) in the complex plane permits to iden
turning-point problem. The following statements will be proven:

(a) for |kr | > k0 and ki = 0 the cross-stream behaviour of axisymmetric instability waves(n = 0) is dispersive in a
neighbourhood of the jet ifλ is small enough. For n �= 0 or r > 1/(2λ), the cross-stream behaviour is dissipative.

(b) for |kr | < k0 and ki = 0 the cross-stream behaviour of axisymmetric instability waves is dispersive. Ifn �= 0, the cross-
stream behaviour is dispersive only outside a neighbourhood of the jet ifλ is small enough.

The proof of statements (a) and (b) can be carried out by the same way. Let us firstz = iλr be a new independent variable a
reduce Eq. (2.6) to its normal form by writinĝun0 = un0z1/2 in (2.6) andp = ±n − 1/2, whereun0 is a suitably normalized
function identically equals to then-th-order Hankel function of the first kind outside the jet. Then, we have

∂2ûn0

∂z2
+ Q(z)ûn0 = 0, Q(z) = 1− p(p + 1)

z2
, (2.10)

where the functionQ is regular in the whole of the domainE . Eq. (2.10) defines a turning-point problem (see Bender
Orszag [16]). The turning points are points whereQ vanishes, they are given by

r0 = ±
√

p(p + 1)

iλ(k)
, (2.11)
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whereλ is defined by (2.7) on its Riemann surface. It follows thatr0 is real only if |k| > k0 andki = 0 for n = 0, or |k| < k0
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andki = 0 for n �= 0. Then by Eq. (2.10) the cross-stream behaviour of neutral axisymmetric instability waves is dis
up to r0 = 1/(2λ) if |k| > k0. Since (2.10) is valid for|λ| = O(εα), |λ| �= o(εα), the turning-point gives the radial positio
of the dispersive–dissipative transition in the intermediate domain forn = 0. This result is completely compatible with th
asymptotic expansion (2.9): the rapidly varying component of (2.9) decays exponentially (dissipates) away from the je
asεα = o(|λ|). For |k| < k0 andki = 0, the turning point lies in the complexr-plane and the cross-stream behaviour beco
dispersive. As indicated by (2.9) the solution is wavelike with very small and slowly changing wavelengths and slowly
amplitude as function ofrα . The casen �= 0 and|k| > k0 leads to a dissipative behaviour. Therefore, the statement (a) is pr

The proof of statement (b) is very similar. Let us consider the case|k| < k0, ki = 0 andn �= 0, for whichr0 is real. Hence,
turning to the definition ofλ on its Riemann surface, we can assert that the cross-stream behaviour of instability w
dispersive forr > r0 and dissipative in a subdomainr < r0 outside the jet. By the definition ofr0, the length of this subdomai
is an increasing function ofn and consequently, the cross-stream decay of instability waves is exponential forr � O(n). Thus,
the absolute value ofun0 is negligibly small for largen and r > r0. For axisymmetric instability waves, the functionQ is
complex for allr outside the jet and the cross-stream behaviour is dispersive.

Recall that the inequalities|kr | > k0 and|kr | < k0 must be considered in the sense of asymptotic analysis, that is,|λ| = O(1)

and |λ| �= o(1). If |λ| = o(εα) one might consider trying to apply perturbation methods to find the asymptotic structure
leading-order of Eq. (2.4) reduces to the transverse part of the Laplace operator:

L0un0 =
{

∂2

∂r2
α

+ 1

rα

∂

∂rα
− n2

r2
α

}
un0 = 0. (2.12)

The form of the solution no longer depends on the phase velocity but is stronger affected by the azimuthal wavenumbn. For
axisymmetric instability waves, the general solution corresponds to the asymptotic form of the Hankel function fo
argument, that isu00(z) ∼ lnz, with z = iλrα/εα . This solution obviously breaks down at large distances from the
From matching arguments we deduce that the turning-point becomes larger than O(1) and has no physical sense. For no
axisymmetric instability waves, the solution which matches the Hankel function is given byun0(z) ∼ 1/zn, for n > 0. Let
us note that the branch points go to zero asM → 0 for finite values ofω and, consequently, the length of the vertical st
between the two branch points, representing waves with supersonic convective Mach number, decreases until zero. H
axisymmetric pressure fluctuations may exhibit a dispersive behaviour in the vicinity of low-speed jets.

2.4. Branch points and far-field

Since outside the jet, the linear operator is homogeneous in space variablex, it is possible to make use of the Fourier–Lapla
transform. As solutions of the linear wave equations may be expressed in terms of Hankel functions, the pressure fie
simplified to

pn(x, r,ω) ∼
+∞∫

−∞
G(K;ω)H

(1)
n

(
iλ(K;ω)r

)
exp(iKx)dK, (2.13)

where the algebraic function is identified to its first analytic branchλ1(K;ω) for the boundary condition to be satisfie
Following Tam and Morris [15], the functionG is the Fourier transform of the leading-order of the WKBJ approximation

G(K;ω) = 1

2π

+∞∫
−∞

A0(X;ω)exp

(
i

ε

X∫
0

k(s;ω)ds − iKx

)
dx. (2.14)

In a spherical coordinate system(η,χ, θ) centred at the nozzle exit of the jet with the polar axis aligned in the directio
the flow, the far-field can be evaluated asymptotically (2.13) for largeR by applying the method of stationary-phase. Follow
standard arguments and considering the asymptotic form (2.9) of the Hankel function, one obtains that the station
point K∗ is defined byK∗ = ±k0 cosχ , which implies|K∗| < k0. Thus, one finds that the stationary phase point of Eq. (2
exists only if the phase in the integrand satisfies

∂

∂X

( X∫
0

k(s;ω)ds ∓ k0(ω)cosχ

)
= 0, (2.15)

for some frequenciesω, that is, if the (single) stationary pointX∗ is such that

k(X∗;ω) = ±k0(ω)cosχ. (2.16)
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Since the right term of (2.16) is bounded byk0, this condition is necessarily satisfied if the spatial branch meets a branch cut. In
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other terms, the exponential-algebraic transition leads to acoustic radiation in the far-field. Physically, the radiated so
is no longer an insignificant part of the total phenomenon. The disturbances associated with the flow-instability proc
extend from the jet all the way to the far field. With the notations of Section 2.2, the direction is given by cosχ = k∗

r /k0 and
depends onω. Note that the branch cuts of the local problem are induced by the boundary conditions, through the m
process given by (2.14).

Since the phase ofλ on the first sheet of the Riemann surface satisfies Eq. (2.8), the wavenumber of the asymptotic ev
of (2.13) is obviously the branch pointk0. One obtains finally

pn(η,χ;ω) ∼ 2

η
G
(
k0(ω)cosχ;ω

)
exp

(
ik0(ω)η

)
. (2.17)

The next section deals briefly with the numerical formulation for performing calculations of instability waves. Usi
structure of solutions on the Riemann surface, the computational domain has been reduced to the vicinity of the jet. He
method has been used to discretized the operators. The mathematical and computational steps needed to calculate
branches will not be fully explained. A more complete explanation of the numerical procedure will be published elsew

3. Numerical formulation

The approximate solution requires two steps. First the operator associated with the linearized equations is conv
matrix. In the present method the discretized system is obtained by a spectral collocation discretization through a
domain technique. Such a method can be applied with no modification when the viscosity effects are taken into accou
second step the resulting nonlinear eigenvalue problem (nonlinear ink) is solved at every axial locationX by using the linear
companion matrix method when possible.

3.1. Spectral discretization

The differential equations are reduced to linear algebraic equations using a spectral collocation method (see Kh
al. [12], Malik [13]). One drawback to these techniques has been the requirement that a complicated physical domain
onto a simple computational domain for discretization. Letr = f (t) denote a mapping of the computational coordinatet into
the natural coordinater . The convergence properties of the approximation toφ(r) can be determined from the behaviour of t
functionφ(f (t)). The functionf must be infinitely differentiable if the high-order accuracy and exponential convergence
associated with spectral methods are to be preserved. Additionally, even smooth stretching transformations can de
accuracy of a spectral method, if the stretching is severe. The latter restriction is overcome in the present method by
the physical domain into two domains which may be denoted as domain 1 and domain 2. The only point which be
both the domains is the inflection point of the streamwise component of the mean velocity profile. Each domain pres
advantages of spectral collocation and allows the ratio of the mesh spacings between regions to be several orders of
larger than allowable in a single domain.

Since the problem of interest here is nonperiodic, Chebyshev polynomials are suitable basis functions. The
collocation points are the Gauss–Lobatto points for every domain. The derivative matrices are constructed for both the
as described for a single domain (see Malik [13]). The dimension of the unknown vector depend on the number of d
variables. In most of computations of this paper, the compressible version of the Rayleigh equation is used, and so
has only one component: the pressure. However for reasons which will appear in the following section, it is not po
extent this approach to small frequencies. Indeed, the linearized, viscous, compressible equations may be conside
large Reynolds number in the spirit of Tam and Chen [17]. Then, the vector is composed of velocity components, pres
density. For both cases, interface conditions are obtained by requiring continuity of components and their derivatives.

3.2. Inviscid approximation

To simplify the necessary calculations one can use the inviscid stability theory since the mean flow is dynamically
even in the absence of viscosity. Such a problem requires solving a differential equation with singularities on or
computational domain. These singularities, usually called “critical points” are particularly severe for Chebyshev metho
these global expansions algorithms are very sensitive to the analytic properties of the solution.

As has been discussed by many investigators, the solution for inviscid damped waves is obtained by analytic con
of that of the unstable wave in the complexr-plane. By making a change of coordinates, one can solve the problem a
path in the complex plane that makes a wide detour around the singularity. The new integration contour must pass thr
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boundary points and should be as smooth as possible, as indicated by Boyd [18]. Unfortunately, the stretching transformation
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leads to a new distribution of nodes along the complex contour and particularly around the critical point. Followin
the multi-domain spectral collocation method, the domain which contains the critical point is divided into two domain
necessary. In some cases, the critical point is too close to the origin for the complex mapping method to be applied. This
a posteriori, taking into account viscosity in our calculations.

Since the WKBJ approximation is valid only inside and in the immediate vicinity of the jet, the boundary conditions
discretized system may depend onk. For exponential decay, one can find a region far enough from the inflection point w
the pressure fluctuation is negligibly small. Therefore in the numerical computation it is taken to be zero. Such a b
condition fails for algebraic cross-stream decay. In this case, the asymptotic expansions of then-th-order Hankel functions
show that the necessary length of the integration domain would become too large for a reasonable number of points. I

pressure fluctuation is required to match then-th-order Hankel function of the first kindH(1)
n outside the jet, that is, comple

pairs(k,ω) are determined by numerical integration of the Rayleigh equation together with the boundary conditions

pn0(0) = 0 and pn0(r∞) = H
(1)
n (iλr∞), (3.1)

where r∞ is the upper bound of the integration domain. The choice of the regular branch forλ depends on the sheet
the Riemann surface under consideration. It must be noted that now the discretized problem can no longer be wr
polynomial in the parameterk.

3.3. Global or local method?

There are two classes of numerical methods that can be used for computing the eigenvalues: global and local me
the global methods a generalized eigenvalue problem is set up and the eigenvalues are obtained by using standard
When the discretized operator is a polynomial in the parameterk, several methods exist for determining the set of eigenva
without an initial estimate. Following, the linear companion matrix method (see Bridges and Morris [19]), the linear diffe
operator is converted to a generalized eigenvalue problem. But this method does not apply if the boundary condition
polynomials in the parameterk. In such a case, we use a local method. At each value ofω, the wavenumber is performed b
searching for the zero of the function

p′
n0(r∞) − iλH

(1)′
n (iλr∞) = 0. (3.2)

In a local method, a guess for the eigenvalue is required. Only the eigenvalue which happens to lie in the neighb
of the guessed value is computed using iterative techniques such as Newton’s method to solve (3.2). Thereafter, the
solution at the previous axial location can be used as the initial guess for the eigenvalue at the next axial location. Extr
the first guessed eigenvalue at the next axial location from previous values often speeds up the convergence as long a
flow profiles are slowly changing.

4. Numerical results for cold supersonic jets

4.1. Mean-flow profile

Before numerical calculations can be performed, it is necessary to provide a description of the mean velocity an
profiles in the jet. The mean velocity profiles are taken from experimental measurements of perfectly expanded super
obtained by Lau et al. [3] whose data were fitted by an error function profile and Troutt and McLaughlin [2] who fitted d
a half-Gaussian profile.

It is known that a supersonic jet can be divided into three regions, i.e. the core, the transition and the fully develope
according to the characteristics of the mean velocity profile. Here, we restrict the analysis to the core region where
velocity may be approximated by a half-Gaussian profile. In the core region, close to the nozzle exit, the center part
has a uniform velocity which is equal to the fully expanded jet velocity. Surrounding the core, there is a mixing laye
broadens in the downstream direction. In the present work the mean velocity is approximated by

ū(r;X) =



1
(
r < h(X)

)
,

exp

(
− ln 2

(
r − h(X)

b(X)

)2) (
r � h(X)

)
,

(4.1)
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whereh is the radius of the potential core andb is the velocity half-width of the annular mixing region. The density is related
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to the mean axial velocity using a Crocco relationship,

ρ̄ =
(

ū + T∞
T0

(1− ū) + γ − 1

2
ū(1− ū)M2

)−1
, (4.2)

whereT∞ andT0 denote the ambient temperature and the jet exit temperature, respectively. Here, we only consider c
that is,T∞/T0 only depends on the Mach number. On substituting forū andρ̄ Eqs. (4.1) and (4.2) into the momentum integ
equation, an algebraic relationship can be found betweenh andb in the annular mixing region. Then, the axial developmen
the jet is completely defined by the axial variation of the jet half-widthb.

Extensive jet instability calculations over a significant range of Strouhal number have been carried out. For mo
it is found that the position of neutral instability is located in the core region of the jet. For the purpose of determin
intersection pointk∗ it is, therefore, not necessary to consider the transition and the developed regions of the jet. The l
the uniform core is obtained by using the modified formulae given by Tam et al. [20]. In the literature db/dx is referred to as
the spreading rateσ of the mixing layer. For the Gaussian mean velocity profile, we have the relation db/dx = ε = 1.2658/σ .
The variation ofσ as a function of the jet exit Mach number,M , has been tabulated by Birch and Eggers [21]. The correlat
are given by

σ = 10.7/
(
1.0− 0.1163M2), M < 2.0,

σ = 19.4
√

M − 0.9418, M > 2.0.
(4.3)

As an example, forM = 1.5, we find db/dx = ε = 0.088. Note also that for supersonic cold jets, experimental measurem
have shown that db/dx � 0.10.

4.2. General methodology and numerical results

In this section numerical results about local pairs(k∗,ω∗) for which k(X;ω∗) ∩ K(ω∗) is non-empty, will be presente
for Kelvin–Helmholtz modes with small azimuthal wavenumbers (0� n � 3). These pairs were determined by numeri
integration of the linearized equations of motion, together with boundary conditions outside the jet. At each value of t
locationX, the phase velocity of a neutral wave was located by searching for the zero of a growth rate−ki for positiveω.
As the location is increased from the origin to the end of the core region, the spatial branches move into the uppe
the complexk-plane and, consequently, points of zero growth rates describe curves along the real axiskr > 0. As discussed
in the Section 2.2, some of these curves may lie in the vertival strip|kr | < k0, corresponding to supersonic phase velocit
According to the definition of the branch cutK , the segments of these curves for which|kr | < k0 and their images in theω
plane give complex pairs(ω∗, k∗) as functions of the axial location, for which the cross-stream decay of pressure fluctuat
algebraic. The cross-stream wavenumber is then given by the functionλ(k∗;ω∗) and depends onn through(ω∗, k∗). The above
reasoning presents the advantage of uniquely determining which spatial branches are pertinent to acoustic radiatio
the jet. The numerical procedure to determine the spatial branches involves the definition of the functionλ on its Riemann
surface. Subsequently, spatial branches are analytically continued into the second Riemann sheet for damped waveki > 0),
if necessary. This is permissible because boundedness of solution at larger is not a requirement of the near-field solution. T
associated parametric dependence of the real and imaginary partskr andki on ω andX is displayed in Fig. 3, for a cold je
of Mach numberM = 1.7 and for axisymmetric (n = 0) and helical (n = 1) Kelvin–Helmholtz modes. Observe that for hi
frequencies the spatial branches have the same behaviour, whereas for low frequencies the phase velocity depends
the azimuthal wavenumber. A consequence is that forx = 10, there is no intersection pointk∗ for the helical mode. But it stil
exists for the axisymmetric mode, as indicated by the analytic continuation into the second Riemann sheet, in Fig. 3.

For M = 1.7, Fig. 4 shows branches described by points of zero growth rates, in the limit processki → 0, ki > 0, on a
multisheeted plane with two connected Riemann sheets. Each curve can be divided into two segments, according to
stream structure of the pressure fluctuations. The first branch (sheet 1 in Fig. 4) is associated with exponential decays,
the boundedness condition asr → ∞. The second branch (sheet 2) lies along the branch cut, so that, the cross-stream s
of pressure fluctuations is algebraic at the limitki → 0. Application of the criterion for exponential-algebraic transition reve
that only small azimuthal wavenumbers contribute to acoustic radiation in the far field. For instance, the line associa
n = 3 passes along a single sheet of the Riemann surface. This simple topological configuration leads to an exponen
in the cross-stream direction for allX. It follows that the dominant contribution of instability waves to acoustic radiatio
the near field (rα = O(1)) is given by segments of the realω-axis, depending on small azimuthal wavenumbers and co
parameters. The mapping of these segments throughω∗ = ω∗(X) into the physical domain shows locationsX for which it is
possible to find a frequencyω∗ such thatk(X;ω∗) ∩ K(ω∗) is nonempty, that is, the cross-stream decay of disturbanc
algebraic. For the axisymmetric Kelvin–Helmholtz mode, Fig. 5 shows that the lower bound ofΩ∗ is displaced into the fully
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Fig. 3. Evolution of spatial branches associated with the axisymmetric (n = 0) and the helical (n = 1) Kelvin–Helmholtz modes as the axi
location is increased in the core region, for a cold supersonic jet of Mach number 1.7: (a) imaginary partki of k versus real frequencyω;
(b) phase velocityω/kr versusω. �, x = 5, n = 1; �, x = 5, n = 0; ✷, x = 10, n = 0; �, x = 10, n = 1. Dashed line: analytic continuatio
into the second Riemann sheet.

Fig. 4. Phase velocity of weakly damped instability waves (ki → 0, ki > 0) as a function of the frequency when the axial location is increa
from the origin to the end of the core region. Cold jet of Mach numberM = 1.7. ✷, n = 0; �, n = 1; •, n = 2; ◦, n = 3; dashed line, analytic
continuation into the other Riemann sheet. The solid lines on the sheet 2 give rise to algebraic decay in the cross-stream direction.

developed region, asM → 1, M > 1, where the centreline mean velocity of the jet is a decreasing function ofX. In this last
case, numerical computations of spatial branches may be continued in the developed jet region in order to have this up
But, the present approach fails when the order of magnitude of the frequency becomes comparable with that of the s
variableX = εx. Note also that the upper bound is not located in the core region. For non-axisymmetric modes, Fig.
that the lengths of these segments are zero for low supersonic jets (typicallyM < 1.6 in Fig. 6). Thus, we conclude that for lo
supersonic jets, only axisymmetric disturbances may generate acoustic radiation in the far-field; the contributions fr
zero azimuthal wavenumbers represent a near-field of hydrodynamic type. For high supersonic jets, the entire history
evolutions of instability waves need to be taken into account in determining the contribution of each azimuthal wave
and the physical regions concerned by the radiation of sound.

Forα = 1 (rα ∼ X), the cross-stream decay of fluctuations is not simply given by a Hankel function. The pressure fie
be represented by a Fourier integral, as shown in Section 2.4, giving both the hydrodynamic components as well as th
sound. Note also that this result fails in small neighbourhoods of branch points, where a complete asymptotic analysi
developed by consideringλ as a small parameter.
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Fig. 5. Domain of exponential-algebraic transition inM–ω (a) andM–x (b) planes forn = 0. The dashed line in (b) gives the end of the c
region. For each point located above the curve, into the grey domain, the cross-stream decay is algebraic at a location correspon
stationary phase point of the pressure far-field.

(a) (b)

Fig. 6. Domain of exponential-algebraic transition inM–ω (a) andM–x (b) planes for non-axisymmetric modes.�, n = 1; •, n = 2; ◦, n = 3;
the dashed line in (b) gives the end of the core region.

5. Conclusion

We have examined the near-field pressure decay generated by instability waves in axisymmetric jets as a source
Exponential decay of pressure fluctuations is found to change to algebraic around locationsX which depend on the azimuth
properties of the local plane waves. This transition is a condition for acoustic radiation to the far-field, where the wave
given by the branch point, and so decreases with the Mach number.

It has been shown that for low supersonic jets (M → 1, M > 1) the location of the lower bound of the radiating regi
associated with the axisymmetric Kelvin–Helmholtz mode moves inside the developed jet region. It follows that th
stream wavenumber, goes to zero, so the wavelength may become larger than the envelope scale. According to
results, other azimuthal modes no longer generate sound in the near field.

Finally we note that the generalization of these concepts to subsonic jets is an open question (see Cooper and Cri
and Crighton and Huerre [23] for a discussion of superdirective sources in low-speed jets). ForM = 0 andωi = 0, the branch
cut K is identical with the imaginary axis and one can use the Hilbert transform of the perturbation to reduce the an
positive wavenumbers (for instance, see Huerre and Monkewitz [24]).

This study has been supported by the french government and by ONERA.
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Appendix. Equation outside the jet
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In this appendix Eq. (2.4) to be solved outside the jet is obtained from equations of motion. On factoring out the exp
dependence onθ and t the governing equations for the spatial partφn = (un,pn) of the solution are obtained from (2.1
and (2.1b). With respect to a cylindrical coordinate system(x, r, θ) centred at the nozzle exit and the corresponding velo
components(un, vn,wn), the governing equations are

−iωun + εv̄∞
r

∂un

∂r
= − 1

ρ̄∞
∂pn

∂x
, (A.1a)

−iωvn + εv̄∞
r

∂vn

∂r
− εv̄∞

r2
vn = − 1

ρ̄∞
∂pn

∂r
, (A.1b)

−iωwn + εv̄∞
r

∂wn

∂r
+ εv̄∞

r2
wn = − 1

ρ̄∞r
inpn, (A.1c)

−iωpn + εv̄∞
r

∂pn

∂r
+ 1

M2

(
∂vn

∂r
+ vn

r
+ inwn

r
+ ∂un

∂x

)
= 0. (A.1d)

Substitution of (A.1a), (A.1b) and (A.1c) into (A.1d) it is straightforward to find that the equation to be solved can be c
the form

δ2
R

(
∂2

∂R2
+ 1

R

∂

∂R
− n2

R2

)
un +

(
k2
0 + δ2

X

∂2

∂X2

)
un

=
(

δ4
Rρ̄∞

(
εv̄∞M

R

)2( ∂2

∂R2
− 1

R

∂

∂R

)
− 2δ2

R

εv̄∞M2

R
iωρ̄∞

∂

∂R

)
un, (A.2)

where the outer variablesR and X are defined byR = δR(ε)r and X = δX(ε)x. The order functionsδR and δX are real,
continuous functions ofε in a neighbourhood of the origin and such thatδX ∼ δR far away from the center of the jet.
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