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Abstract

The paper is concerned with the transition from exponential to algebraic cross-stream decay of instability waves in supersonic
axisymmetric cold jets. The cross-stream structure of these waves is analysed for phase velocities close to the sound speed when
the streamwise inhomogeneities of the mean flow are characterized by a small parameter. It is shown how algebraic decays are
completely compatible with the features of the near-field, and a selection criterion for the occurence of such a behaviour
is given. Near-field pressure fluctuations are then determined as functions of azimuthal properties of instability waves and
control parameters. In some cases, where the dominant contribution to the sound generation is due to the axisymmetric Kelvin—
Helmholtz instability mode, algebraic decays are not confined in the core region of the jet and the acoustic wavelength becomes
larger than the envelope scale.
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1. Introduction

For perfectly expanded jets, many measurements have shown that large-scale coherent structures are dominant noise
producers in supersonic jets (see Seiner and Ponton [1], Troutt and Mclaughlin [2], Lau et al. [3,4]). These results have been
confirmed by theoretical studies (Mankbadi and Liu [5], Tam and Burton [6,7]) which revealed that only contributions that
arise from these structures can be retained in the aerodynamic sound integral. The shape distribution of the coherent structures
responds to the local profiles of the mean shear flows and may be calculated by using the hydrodynamic stability theory. The
fine-grained turbulence plays an indirect but crucial role in that it controls the development of the coherent structures and
consequently its emitted sound.

An approximate picture of the physical mechanism by which the large turbulence structures generate sound is to regard the
instability wave as a wavy wall (Tam [8]). This analogy suggests that the direction of the most intense noise radiation from
highly supersonic jets can be estimated by using the Mach angle relation based on the speed of the most amplified instability
wave (Tam et al. [9]). However, most of previous works are confined to highly supersonic jets, for which the most amplified
instability wave has a supersonic phase velocity (relative to ambient sound speed) and do not consider the subsonic—supersonic
transition. In some cases, such a transition gives rise to acoustic radiation: the cross-stream behaviour of pressure fluctuations
becomes dispersive and the cross-stream decay of the amplitude changes from exponential to algebraic. The present study is
further motivated by the fact that, this exponential-algebraic transition may depend strongly on the azimuthal properties of
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instability waves and control parameters. Accordingly, there is no reason to consider only the most amplified instability wave
for the determination of the dominant noise source for low supersonic jets.

The primary goal of this work is to examine the phenomenon of exponential-algebraic transition of pressure near-field for
low-supersonic jet flows by resorting to the linear stability theory. Recently, numerical simulations of supersonic jets and their
sound fields have shown that linear stability can be used to estimate near-field sound pressure levels (Freund et al. [10], Mitchell
et al. [11]). In Section 2 we study the decay of near-field fluctuations in a convectively unstable axisymmetric jet. We restrict
the discussion to the Kelvin—Helmholtz instability. It is easy to write down a general integral solution to the problem outside the
jet. But there is no universal way in which the exponential-algebraic transition is achieved, and indeed much of the emphasis
here is to show that the transition depends on the azimuthal properties of instability waves. In this paper, it is shown that the
exponential-algebraic transition is a sufficient condition for acoustic radiation in the far-field. Physically, when such a transition
arises, the disturbances associated with the flow-instability process extend from the jet all the way to the far field. The problem
is global in nature. In Section 3 the numerical formulation used to solve the governing stability equations is described. Here,
a spectral collocation discretization through a multiple domain technique has been used for the calculations. This approach,
which has been developed by Khorrami et al. [12], Malik [13] among others, allows us to include the viscosity terms when it is
necessary. Numerical results are then presented in Section 4 for cold supersonic jets.

2. Near field structure of instability waves
2.1. Basic formulation

The complex fluctuationg = (u, p) around a given mean jet flog = (i, p) are assumed to be governed by linearized
inviscid, compressible equations of motion. Here the functioasd p are the velocity and the pressure, respectively. We will
userg, the radius of the jet at the nozzle exig the jet exit velocity angbg the jet exit density as length, velocity and density
scales of the problem. The time and pressure scales are givemhyandpoug, respectively. In the sequel, we shall assume
that the mean pressure is constant in the domain of meziamd the product of the mean velocity by the mean density belongs
to the class consisting of solenoidal vectors (thapi{g/ - ) + U - Vp = 0) vanishing far away from the center of the jet flow.
Thus, in dimensionless form, the perturbation p) satisfies the following equations
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in the class consisting of vecto(s, p) satisfying a radiation condition or boundedness condition outside the jet. Here the jet
exit Mach numbetM = 1/./y p, vy beeing the ratio of specific heats, is a control parameter.

The non-turbulent fluid outside the jet is assumed to be inviscid so that the distribution of fluctuations is a solution of the
above equations outside the jet. In this paper, the discussion is restricted to instabilities arising from purely inviscid mechanisms
as the Kelvin—Helmholtz instability waves. It follows that Eqgs. (2.1a), (2.1b) can be used in the whole of the dbmvian
the exception of regions where the inviscid approximation fails to represent the cross-stream behaviour of instability waves.
For incompressible shear flows, Le Dizes et al. [14] have shown that this phenomenon occurs in large viscous regions when the
instability waves are damped. From a numerical point of view, weakly viscous effects may be taken into account to compute
the cross-stream behaviour of fluctuations in these regions. As the governing equations can be solved in a close form outside
the jet, another possibility is to use the contour deformation method, as described by Tam and Morris [15].

In the present study, we are interested in the cross-stream structure of solutions to the above problem for a weakly non-
parallel axisymmetric jet. Thus, the properties of the mean flow are assumed to be functions of a slow spaceXvariahle
wheree is a small parameter characterizing the streamwise inhomogeneities of the mediumdandtes the streamwise
direction. With respect to a cylindrical coordinate systémr, 0) centred at the nozzle exit, the mean velocity may be
represented analytically in the form

a:(x,r) > (a(X,r),e0(X,r),0). (2.2)

Now let us consider the near-field region around the jet. Outside the jet, the streamwise compsti@atically zero and the

mean radial velocity componentcan be calculated by integrating the mean continuity equation. Following Tam and Burton [7],
the numerical value ofv is regarded as a constant and givenuby. It follows that the dimensionless mean fluid density is
constant and uniquely determined from the control parameters, such as the Mach nimttbe temperature of the jet exit. It

will be denoted byps. Such assumptions imply that the linear operator associated with (2.1a), (2.1b) is homogeneous in space
variable X. Homogeneity allows us to make extensive use of Fourier—Laplace transforms to reduce the problem (2.1a), (2.1b)
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to an ordinary differential equation outside the jet. Another point of view consists in using the WKBJ approach to describe the
instabilities. Since the flow is slowly evolving on the streamwise s&ali is legitimate to decompose all solutions into local
plane waves at any streamwise stationNote that the latter mathematical description is known to be valid only inside and in
the immediate vicinity of the jet (a proof is given by Tam and Morris [15]).

2.2. Cross-stream structure of local plane waves

The starting point of the analysis is the problem defined by (2.1a), (2.1b) and (2.2) which describes both the instability waves
behaviour and the acoustic near and far field, with some conditions dorthe boundary of2. Here, we are interested in the
manner in which the near-field decay changes from exponential to algebraic around a I&cataomd more generally we are
interested in the cross-stream structure of solutions to (2.1a) and (2.1b) outside thesjed; 6or

Since the jet is assumed to be axisymmetric, the complex fluctuations can be Fourier-decomposed into azimuthal modes.
Egs. (2.1a), (2.1b) being invariant under arbitrary time translations, it is legitimate to seek solutions of the form

¢(x,r,0,1) = % / On (x, r, w) exp(ind — iwt) dw, (2.3)
L

[

wheren is an integer and is the frequency; the integration is performed along the patliin the complexv-plane as sketched
in Fig. 1. Since azimuthal and temporal dependances are specified throughout the entire flow, one has to solve a problem for
whichn andw are now parameters.
Let X and R be defined byX = 8§x (¢)x and R = §r(¢)r, wheresy andsy are order functions. Then by eliminating all
other dependent variables in favourwgf, the streamwise component wf, one can find the equation to be solved outside the
jet

2 2 2
,%(% %% - %)un + <k§ + 5,2(%)14” = F(eioo)tn, (2.4)
which will be written asalzeLoun + Lqu, = Fuy, whereLg is the transverse part of the Laplace operator/ignid defined by
kcz] = pooM2»?. The full expression fofF is not of first importance here; it is given in Appendix. It seems natural to introduce,
for the purpose of the analysis, the one parameter family of local variaplesRs“ /5 (¢), with « > 0 and to consider a
local asymptotic approximation af;, in the vicinity of the jet. HereLg does not depend osn, while for any (sufficiently
differentiable)s-independent functiog, the linear operatoF is such thatFg = 0(851%). For slowly divergent free shear flows,
8x may be a measure of nonparallel basic flow effects, for instdgrce) = ¢. Then, the degeneration of (2.4) in the local
variabler,, only depends on the order of magnitude|@fyu, || for « = 0. For O< « < 1, the family of local variables plays the
role of a family of intermediate variables.

Wi

\
)

Fig. 1. Locus of spatial branch in compléxplane as» moves along.,, contour in complex»-plane for smalk;. The branch cuk for the
function A join the critical points forw = w*. Dashed line: analytic continuation into the second sheet of the Riemann surface (corresponding
to solutions which become exponentially largeras o).
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We will first consider the case = 0. As discussed in Section 2.1 the asymptotic response can be given by the standard form
of the WKBJ approximation (see Bender and Orszag [16]) which describes instabilities of weakly non-parallel flows:

q X
Uy ~ Z 8j (@A (X)uyj(r; w) exp(;—/k(s; ) ds), (2.5)
Jj=0 0

wheredg = 1, §; (0 < j < ¢q) are elementary gauge functions ahe= k- + ik; denotes a local (complex) wavenumber
originating in the upper half of thie-plane when the imaginary part efgoes from a large positive value to zero. The leading-
order amplitudedo(X) is determined at another orderdnfrom matching conditions to the solution far away from the jet, and
uy0 is a suitably normalized function which gives the cross-stream behaviour of pressure fluctuations in the vicinity of the jet.
A cause of difficulties is the appearance of teidnsn the formal expansion of which the order of magnitude is not suggested
or dictated by the differential equation or the boundary conditions. However, these functions can be determined by using the
intermediate matching principle, as described by Tam and Burton [6,7]. Here, the ¥rigidis the axial location of the source
on the jet centreline.

By introducing the expansion (2.5) fay, into Eq. (2.4) withe = 0, one finds an equation satisfied iy outside the jet,

Louyuo — Azuno =0, (2.6)
where is given by the irreducible polynomial
P(h k) =22 4 (k3 —k?) =0, 2.7)

which defines an algebraic functiornk; ») in a domain of the complek-plane. Using the new variabte= irr, Eq. (2.6)
reduces to the Euler-Bessel equation ingk@mplex domain. Two linearly independent solutions of (2.6) are then given by

then-th-order Hankel functions of the first and second kin,l) (2) andH,gz) (2), respectively. The passage to the general case
of an arbitrary positive value faz causes no difficulty: one must consider the transformatierv,, /¢ in the definition ofz.
In the following, we exclude situations where the leading-order of Eq. (2.4) redudas:}@ = 0 by reducing the analysis to
the plane of the complex variabtewith the exception of neighbourhoods of branch poihtg).

Let us consider now the algebraic function determined by the polynomial (2.7) in the dénaoditained by removing the
singular points from the completeplane, that is, the pointskg = ++/pscwM andoo. Then at every point € £ this equation
has two distinct finite roots1 andi, = —11, associated with regular branches. In the strictly parallel case, the real part of one
branch, let us say1(k; w), can be taken positive, so that only theh-order Hankel function of the first kin ,fl), satisfies
the boundedness condition on the boundarg2oSuch a choice will be highlighted in Section 2.4. It implies branch &uts

thek-plane as shown in Fig. 1 and such that
—m/2<argr < /2. (2.8)

Let us note in connexion with this, that the singular poififg) go to infinity when the real patb, of the frequencyw moves
from zero along the contour,,. Then, we arrive at the result, that it may be possible to find at least onekJdimthe k-plane
where a spatial branch meets a branch cut as shown in Fig. 1. Note also that it is clearly impossible to find such a point if the
shear layer thickness is zero since the model would fail to satisfy causality or if the Mach nufhibeero.

For weakly non-parallel flows, the local wavenumbék ; w) traces a pathi in the k-plane from the poink(0; w) which
passes through the real axis, as shown in Fig. 2. One has to remember that, as the wave propagates downstream the local
growth rate—k; (X; w) reduces. This is because the flow slowly diverges so that the transverse velocity gradient is gradually
reduced. This path and the singular points continuously changeras/es alond.,,, or with the continuous change of control
parameters. More detailed investigation shows that only singular pointstioét is the points not belonging to the dom&in
can act as an obstacle to the deformation of the patHence it is natural to expect, that the character of the permutation of the
functionsiq andio, is determined by the distribution of the singular points on the sphere of the complex varidblerefore,
we arrive at the following criterion for exponential-algebraic transitibat least one spatial branch(X; L,,) meets the branch
cut K in the complex-plane, then the cross-stream decay of the amplitude of pressure fluctuations is algebraic in a subdomain
of 2.

This result follows by the permutation of branches, using the branchkcatsdefined above. For every intersection péint
the real part ok is zero andk;’| < kp). Then, taking the intermediate limit of the Hankel functieg beeing fixed, we find

| exp(—Ar)|
Wi

It follows that the cross-stream decaygfg is algebraic fork*. In the case where no intersection point is found, the cross-

stream decay is exponential for every locatirsince the real part of1 is positive and no travelling wave is generated in the

lim| Y (i2r)| ~ (2.9)
Fo



C. Millet, G. Casalis / European Journal of Mechanics B/Fluids 23 (2004) 367-379 371

k(Xo; w)

Fig. 2. Locus of spatial branch in compléxplane as» moves alongL,, contour, for two locationsX{g and X > Xg. In the displacement of
the pointw along theL,, contour from the pointug, the pathAg is continuously deformed into the path. The algebraic function.(k; w)
continuously changes with the continuous change of the position of theipomthe Riemann surface.

cross-stream direction. In order to have a continuously change of the functigth the continuous change of the wavenum-
berk, one has to define it not on titeplane, where it is many valued, but on a 2-sheeted Riemann surface, to every point of
which correspond one value of the functibn

In gradually displacing thé& ., contour until the real axis, the imaginary parts of singular paoittg(w) go to zero and the
parts of branch cuts not belonging to the imaginary axis coincide with the segment consisting in neutrakwav@swith
supersonic phase velocitigg,(| < kg). The length of this segment is an increasing function of the Mach nuMband is zero
in the incompressible flow assumption. Then the criterion can be expressed in terms of phase velocities of neutral waves. Thus,
for a given integen, the cross-stream decay of pressure fluctuations is algebraic only if neutral waves have supersonic phase
velocities(relative to the ambient sound spged

In the following section, we show that a similar transition holds in the cross-stream direction when the phase velocity of the
neutral axisymmetrici = 0) instability wave is subsonic, in a way which is given by a turning-point problem. It is shown that
the feature of the near-field is completely compatible with the asymptotic expansion (2.9) valid in the intermediate region and
with the far-field region.

2.3. Aturning-point problem

In this section, we study the cross-stream behaviour of local plane waves in the annular|x¢gioB(1), |A| # o(1)
centered at the poirtfy at the limitw; — 0. We show that the analysis of Eq. (2.6) in the complex plane permits to identify a
turning-point problem. The following statements will be proven:

(a) for |k,| > kg and k; = 0 the cross-stream behaviour of axisymmetric instability wafres= 0) is dispersive in a
neighbourhood of the jet if is small enoughFor n £ 0 or r > 1/(2)), the cross-stream behaviour is dissipative

(b) for |k,| < kg and k; = 0 the cross-stream behaviour of axisymmetric instability waves is dispersives 0, the cross-
stream behaviour is dispersive only outside a neighbourhood of the)jé$ $mall enough.

The proof of statements (a) and (b) can be carried out by the same way. Let gisfivst be a new independent variable and
reduce Eq. (2.6) to its normal form by writing,g = unozl/z in (2.6) andp = £n — 1/2, whereu,,q is a suitably normalized
function identically equals to the-th-order Hankel function of the first kind outside the jet. Then, we have

pp+1

2
2t + Q@i 0 =0, Q@) =1- T, (2.10)

322
where the functionQ is regular in the whole of the domai. Eq. (2.10) defines a turning-point problem (see Bender and
Orszag [16]). The turning points are points wh&eanishes, they are given by

iw, (2.11)
ir(k)

ro=
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wherea is defined by (2.7) on its Riemann surface. It follows thats real only if |k| > kg andk; = 0 forn =0, or |k| < kg
andk; = 0 for n # 0. Then by Eq. (2.10) the cross-stream behaviour of neutral axisymmetric instability waves is dispersive
up torg =1/(21) if |k| > kg. Since (2.10) is valid fofa| = O(s%), |A| # o(e¥), the turning-point gives the radial position
of the dispersive—dissipative transition in the intermediate domaim for0. This result is completely compatible with the
asymptotic expansion (2.9): the rapidly varying component of (2.9) decays exponentially (dissipates) away from the jet as long
asc® =0o(JA|). For|k| < kg andk; = 0, the turning point lies in the complexplane and the cross-stream behaviour becomes
dispersive. As indicated by (2.9) the solution is wavelike with very small and slowly changing wavelengths and slowly varying
amplitude as function of, . The case: # 0 and|k| > kg leads to a dissipative behaviour. Therefore, the statement (a) is proved.
The proof of statement (b) is very similar. Let us consider the ggse kg, k; = 0 andn # 0, for whichrg is real. Hence,
turning to the definition of. on its Riemann surface, we can assert that the cross-stream behaviour of instability waves is
dispersive for > rg and dissipative in a subdomain< rg outside the jet. By the definition @f, the length of this subdomain
is an increasing function of and consequently, the cross-stream decay of instability waves is exponentia fo(n). Thus,
the absolute value af,,qg is negligibly small for large: andr > rg. For axisymmetric instability waves, the functigh is
complex for allr outside the jet and the cross-stream behaviour is dispersive.
Recall that the inequalitigg, | > kg and|k,| < kg must be considered in the sense of asymptotic analysis, thatis0(1)
and|A| # o(2). If |A] = 0(¢¥) one might consider trying to apply perturbation methods to find the asymptotic structures. The
leading-order of Eq. (2.4) reduces to the transverse part of the Laplace operator:
2 2
o 10 —"—}un(,:o. (2.12)

Louno= { 8r§ ro Org "5

The form of the solution no longer depends on the phase velocity but is stronger affected by the azimuthal wavenkonber
axisymmetric instability waves, the general solution corresponds to the asymptotic form of the Hankel function for small
argument, that isigg(z) ~ Inz, with z = iirg/e*. This solution obviously breaks down at large distances from the jet.

From matching arguments we deduce that the turning-point becomes larger thaan@ has no physical sense. For non-
axisymmetric instability waves, the solution which matches the Hankel function is givendiy) ~ 1/z", for n > 0. Let

us note that the branch points go to zeroMas— O for finite values ofw and, consequently, the length of the vertical strip
between the two branch points, representing waves with supersonic convective Mach number, decreases until zero. Hence only
axisymmetric pressure fluctuations may exhibit a dispersive behaviour in the vicinity of low-speed jets.

2.4. Branch points and far-field

Since outside the jet, the linear operator is homogeneous in space vatidliBgossible to make use of the Fourier—Laplace
transform. As solutions of the linear wave equations may be expressed in terms of Hankel functions, the pressure field may be
simplified to

“+00
Pn(x,r, @) ~ / G(K; ) HP (in(K; w)r) expliK x) dK, (2.13)
—0o0
where the algebraic function is identified to its first analytic branghk; ») for the boundary condition to be satisfied.
Following Tam and Morris [15], the functio@ is the Fourier transform of the leading-order of the WKBJ approximation

1 +00 X
G(K;w)= o / AMX;w)eXp(L—/k(s;w)ds —in) dx. (2.14)
0

In a spherical coordinate system, x, 0) centred at the nozzle exit of the jet with the polar axis aligned in the direction of
the flow, the far-field can be evaluated asymptotically (2.13) for |&dpy applying the method of stationary-phase. Following
standard arguments and considering the asymptotic form (2.9) of the Hankel function, one obtains that the stationary phase
point K* is defined byK* = +kgcosy, which implies| K *| < kg. Thus, one finds that the stationary phase point of Eq. (2.14)
exists only if the phase in the integrand satisfies

—00

X

% (/k(s; ) ds F kg(w) COSx> =0, (2.15)
0

for some frequencies, that is, if the (single) stationary poiat* is such that
k(X™*; ) = £kg(w) COSY. (2.16)
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Since the right term of (2.16) is bounded hy; this condition is necessarily satisfied if the spatial branch meets a branch cut. In
other terms, the exponential-algebraic transition leads to acoustic radiation in the far-field. Physically, the radiated sound field
is no longer an insignificant part of the total phenomenon. The disturbances associated with the flow-instability process now
extend from the jet all the way to the far field. With the notations of Section 2.2, the direction is given py=ck$/ ko and
depends omw. Note that the branch cuts of the local problem are induced by the boundary conditions, through the matching
process given by (2.14).

Since the phase a@fon the first sheet of the Riemann surface satisfies Eq. (2.8), the wavenumber of the asymptotic evaluation
of (2.13) is obviously the branch poikg. One obtains finally

2 .
(0. X @) ~ ;G(ko(w) cosy; w) expliko(w)n). (2.17)

The next section deals briefly with the numerical formulation for performing calculations of instability waves. Using the
structure of solutions on the Riemann surface, the computational domain has been reduced to the vicinity of the jet. Here, a new
method has been used to discretized the operators. The mathematical and computational steps needed to calculate the spatial
branches will not be fully explained. A more complete explanation of the numerical procedure will be published elsewhere.

3. Numerical formulation

The approximate solution requires two steps. First the operator associated with the linearized equations is converted to a
matrix. In the present method the discretized system is obtained by a spectral collocation discretization through a multiple
domain technique. Such a method can be applied with no modification when the viscosity effects are taken into account. In the
second step the resulting nonlinear eigenvalue problem (nonlinéarisrsolved at every axial locatioki by using the linear
companion matrix method when possible.

3.1. Spectral discretization

The differential equations are reduced to linear algebraic equations using a spectral collocation method (see Khorrami et
al. [12], Malik [13]). One drawback to these techniques has been the requirement that a complicated physical domain must map
onto a simple computational domain for discretization. tet f(¢) denote a mapping of the computational coordinatgo
the natural coordinate. The convergence properties of the approximatiog (o can be determined from the behaviour of the
functiong (f(¢)). The functionf must be infinitely differentiable if the high-order accuracy and exponential convergence rates
associated with spectral methods are to be preserved. Additionally, even smooth stretching transformations can decrease the
accuracy of a spectral method, if the stretching is severe. The latter restriction is overcome in the present method by splitting
the physical domain into two domains which may be denoted as domain 1 and domain 2. The only point which belongs to
both the domains is the inflection point of the streamwise component of the mean velocity profile. Each domain preserves the
advantages of spectral collocation and allows the ratio of the mesh spacings between regions to be several orders of magnitude
larger than allowable in a single domain.

Since the problem of interest here is nonperiodic, Chebyshev polynomials are suitable basis functions. The standard
collocation points are the Gauss—Lobatto points for every domain. The derivative matrices are constructed for both the domains
as described for a single domain (see Malik [13]). The dimension of the unknown vector depend on the number of dependent
variables. In most of computations of this paper, the compressible version of the Rayleigh equation is used, and so the vector
has only one component: the pressure. However for reasons which will appear in the following section, it is not possible to
extent this approach to small frequencies. Indeed, the linearized, viscous, compressible equations may be considered, with a
large Reynolds number in the spirit of Tam and Chen [17]. Then, the vector is composed of velocity components, pressure and
density. For both cases, interface conditions are obtained by requiring continuity of components and their derivatives.

3.2. Inviscid approximation

To simplify the necessary calculations one can use the inviscid stability theory since the mean flow is dynamically unstable
even in the absence of viscosity. Such a problem requires solving a differential equation with singularities on or near the
computational domain. These singularities, usually called “critical points” are particularly severe for Chebyshev methods since
these global expansions algorithms are very sensitive to the analytic properties of the solution.

As has been discussed by many investigators, the solution for inviscid damped waves is obtained by analytic continuation
of that of the unstable wave in the complesplane. By making a change of coordinates, one can solve the problem along a
path in the complex plane that makes a wide detour around the singularity. The new integration contour must pass through both
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boundary points and should be as smooth as possible, as indicated by Boyd [18]. Unfortunately, the stretching transformation
leads to a new distribution of nodes along the complex contour and particularly around the critical point. Following anew
the multi-domain spectral collocation method, the domain which contains the critical point is divided into two domains when
necessary. In some cases, the critical point is too close to the origin for the complex mapping method to be applied. This justifies,
a posteriori, taking into account viscosity in our calculations.

Since the WKBJ approximation is valid only inside and in the immediate vicinity of the jet, the boundary conditions for the
discretized system may depend lorFor exponential decay, one can find a region far enough from the inflection point where
the pressure fluctuation is negligibly small. Therefore in the numerical computation it is taken to be zero. Such a boundary
condition fails for algebraic cross-stream decay. In this case, the asymptotic expansions:-ahtbeler Hankel functions
show that the necessary length of the integration domain would become too large for a reasonable number of points. Instead the

pressure fluctuation is required to match theh-order Hankel function of the first kinH,fl) outside the jet, that is, complex
pairs(k, w) are determined by numerical integration of the Rayleigh equation together with the boundary conditions

Pa0©@ =0 and p,o(rec) = H\(irre0), (3.2)

where roo is the upper bound of the integration domain. The choice of the regular branchdepends on the sheet of
the Riemann surface under consideration. It must be noted that now the discretized problem can no longer be written as a
polynomial in the parameté.

3.3. Global or local method?

There are two classes of numerical methods that can be used for computing the eigenvalues: global and local methods. For
the global methods a generalized eigenvalue problem is set up and the eigenvalues are obtained by using standard algorithms.
When the discretized operator is a polynomial in the paranteteeveral methods exist for determining the set of eigenvalues
without an initial estimate. Following, the linear companion matrix method (see Bridges and Morris [19]), the linear differential
operator is converted to a generalized eigenvalue problem. But this method does not apply if the boundary conditions are not
polynomials in the parametér. In such a case, we use a local method. At each valug tfie wavenumber is performed by
searching for the zero of the function

Pho(roe) — IRHAY (irrse) = 0. 3.2)

In a local method, a guess for the eigenvalue is required. Only the eigenvalue which happens to lie in the neighbourhood
of the guessed value is computed using iterative techniques such as Newton’s method to solve (3.2). Thereafter, the eigenvalue
solution at the previous axial location can be used as the initial guess for the eigenvalue at the next axial location. Extrapolating
the first guessed eigenvalue at the next axial location from previous values often speeds up the convergence as long as the mean
flow profiles are slowly changing.

4. Numerical resultsfor cold supersonic jets
4.1. Mean-flow profile

Before numerical calculations can be performed, it is necessary to provide a description of the mean velocity and density
profiles in the jet. The mean velocity profiles are taken from experimental measurements of perfectly expanded supersonic jets
obtained by Lau et al. [3] whose data were fitted by an error function profile and Troutt and McLaughlin [2] who fitted data by
a half-Gaussian profile.

Itis known that a supersonic jet can be divided into three regions, i.e. the core, the transition and the fully developed regions
according to the characteristics of the mean velocity profile. Here, we restrict the analysis to the core region where the mean
velocity may be approximated by a half-Gaussian profile. In the core region, close to the nozzle exit, the center part of the jet
has a uniform velocity which is equal to the fully expanded jet velocity. Surrounding the core, there is a mixing layer which
broadens in the downstream direction. In the present work the mean velocity is approximated by

1 (r <h(X)),

i(r; X) = - 2 4.1
a(r; X) exp(—ln2<7r b(})l(()X)>> (r = h(X)), “.1)
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wherer is the radius of the potential core ahds the velocity half-width of the annular mixing region. The density is related
to the mean axial velocity using a Crocco relationship,

y—1

-1
p= (12+ TT;’O(l—zz)Jr 12(1—12)M2> , (4.2)
0

whereT, and Ty denote the ambient temperature and the jet exit temperature, respectively. Here, we only consider cold jets,
that is, T~/ Tg only depends on the Mach number. On substitutingifandp Egs. (4.1) and (4.2) into the momentum integral
equation, an algebraic relationship can be found betvwesmdb in the annular mixing region. Then, the axial development of
the jet is completely defined by the axial variation of the jet half-wigth

Extensive jet instability calculations over a significant range of Strouhal number have been carried out. For most cases,
it is found that the position of neutral instability is located in the core region of the jet. For the purpose of determining the
intersection poink* it is, therefore, not necessary to consider the transition and the developed regions of the jet. The length of
the uniform core is obtained by using the modified formulae given by Tam et al. [20]. In the literaiide id referred to as
the spreading rate of the mixing layer. For the Gaussian mean velocity profile, we have the reldija & ¢ = 1.2658/ ¢ .
The variation ofr as a function of the jet exit Mach numbe,, has been tabulated by Birch and Eggers [21]. The correlations
are given by

0 =107/(1.0—0.11634%), M <20,
0=194/M —09418 M >20.

As an example, fo = 1.5, we find d/dx = ¢ = 0.088. Note also that for supersonic cold jets, experimental measurements
have shown that#g)/dx < 0.10.

(4.3)

4.2. General methodology and numerical results

In this section numerical results about local pdai$, »*) for which k(X; ©*) N K (™) is non-empty, will be presented
for Kelvin—Helmholtz modes with small azimuthal wavenumbers<(d < 3). These pairs were determined by numerical
integration of the linearized equations of motion, together with boundary conditions outside the jet. At each value of the axial
location X, the phase velocity of a neutral wave was located by searching for the zero of a growthkyta positive .

As the location is increased from the origin to the end of the core region, the spatial branches move into the upper half of
the complexk-plane and, consequently, points of zero growth rates describe curves along the réal-axisAs discussed

in the Section 2.2, some of these curves may lie in the vertival Birip< kg, corresponding to supersonic phase velocities.
According to the definition of the branch ckt, the segments of these curves for whigh| < kg and their images in the

plane give complex pairg™*, k*) as functions of the axial location, for which the cross-stream decay of pressure fluctuations is
algebraic. The cross-stream wavenumber is then given by the fung#idnw™*) and depends omthrough(w*, £*). The above
reasoning presents the advantage of uniquely determining which spatial branches are pertinent to acoustic radiation outside
the jet. The numerical procedure to determine the spatial branches involves the definition of the furatidis Riemann

surface. Subsequently, spatial branches are analytically continued into the second Riemann sheet for dampedwaves (

if necessary. This is permissible because boundedness of solution at langet a requirement of the near-field solution. The
associated parametric dependence of the real and imaginarykpamsl k; on w and X is displayed in Fig. 3, for a cold jet

of Mach numberM = 1.7 and for axisymmetrici{ = 0) and helical £ = 1) Kelvin—~Helmholtz modes. Observe that for high
frequencies the spatial branches have the same behaviour, whereas for low frequencies the phase velocity depends strongly on
the azimuthal wavenumber. A consequence is that ferl0, there is no intersection poikt for the helical mode. But it still

exists for the axisymmetric mode, as indicated by the analytic continuation into the second Riemann sheet, in Fig. 3.

For M = 1.7, Fig. 4 shows branches described by points of zero growth rates, in the limit pigces®, k; > 0, on a
multisheeted plane with two connected Riemann sheets. Each curve can be divided into two segments, according to the cross-
stream structure of the pressure fluctuations. The first branch (sheet 1 in Fig. 4) is associated with exponential decays, satisfying
the boundedness conditionas> co. The second branch (sheet 2) lies along the branch cut, so that, the cross-stream structure
of pressure fluctuations is algebraic at the likgit> 0. Application of the criterion for exponential-algebraic transition reveals
that only small azimuthal wavenumbers contribute to acoustic radiation in the far field. For instance, the line associated with
n = 3 passes along a single sheet of the Riemann surface. This simple topological configuration leads to an exponential decay
in the cross-stream direction for &fl. It follows that the dominant contribution of instability waves to acoustic radiation in
the near field £, = O(1)) is given by segments of the realaxis, depending on small azimuthal wavenumbers and control
parameters. The mapping of these segments thratfigh »*(X) into the physical domain shows locatioXsfor which it is
possible to find a frequenay™* such thatk(X; ™) N K (™) is nonempty, that is, the cross-stream decay of disturbances is
algebraic. For the axisymmetric Kelvin—Helmholtz mode, Fig. 5 shows that the lower boudd isf displaced into the fully
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Fig. 3. Evolution of spatial branches associated with the axisymmaetre) and the helicald{ = 1) Kelvin—Helmholtz modes as the axial
location is increased in the core region, for a cold supersonic jet of Mach nunihefal imaginary park; of k versus real frequency;
(b) phase velocityo/ k, versusw. v, x =5,n=1; A, x=5,n=0; 0, x =10,n =0; o, x = 10,n = 1. Dashed line: analytic continuation

into the second Riemann sheet.
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Fig. 4. Phase velocity of weakly damped instability wavgs-¢ 0, k; > 0) as a function of the frequency when the axial location is increased
from the origin to the end of the core region. Cold jet of Mach numWes 1.7. 0, n =0; B, n = 1; e, n = 2; 0, n = 3; dashed line, analytic
continuation into the other Riemann sheet. The solid lines on the sheet 2 give rise to algebraic decay in the cross-stream direction.

developed region, a& — 1, M > 1, where the centreline mean velocity of the jet is a decreasing functidh bf this last
case, numerical computations of spatial branches may be continued in the developed jet region in order to have this upper bound.
But, the present approach fails when the order of magnitude of the frequency becomes comparable with that of the slow space
variable X = ¢x. Note also that the upper bound is not located in the core region. For non-axisymmetric modes, Fig. 6 shows
that the lengths of these segments are zero for low supersonic jets (typitall{.6 in Fig. 6). Thus, we conclude that for low
supersonic jets, only axisymmetric disturbances may generate acoustic radiation in the far-field; the contributions from non-
zero azimuthal wavenumbers represent a near-field of hydrodynamic type. For high supersonic jets, the entire history of spatial
evolutions of instability waves need to be taken into account in determining the contribution of each azimuthal wavenumber
and the physical regions concerned by the radiation of sound.

Fora =1 (ro ~ X), the cross-stream decay of fluctuations is not simply given by a Hankel function. The pressure field may
be represented by a Fourier integral, as shown in Section 2.4, giving both the hydrodynamic components as well as the radiated
sound. Note also that this result fails in small neighbourhoods of branch points, where a complete asymptotic analysis must be

developed by consideringas a small parameter.
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Fig. 5. Domain of exponential-algebraic transitiondf-w (a) andM—x (b) planes for = 0. The dashed line in (b) gives the end of the core
region. For each point located above the curve, into the grey domain, the cross-stream decay is algebraic at a location corresponding to the
stationary phase point of the pressure far-field.
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Fig. 6. Domain of exponential-algebraic transitiontif+w (a) andM—x (b) planes for non-axisymmetric modd@.n =1;e,n=2;0,n=3;
the dashed line in (b) gives the end of the core region.

5. Conclusion

We have examined the near-field pressure decay generated by instability waves in axisymmetric jets as a source of noise.

Exponential decay of pressure fluctuations is found to change to algebraic around lo&atitmish depend on the azimuthal
properties of the local plane waves. This transition is a condition for acoustic radiation to the far-field, where the wavelength is
given by the branch point, and so decreases with the Mach number.

It has been shown that for low supersonic jets > 1, M > 1) the location of the lower bound of the radiating region
associated with the axisymmetric Kelvin—Helmholtz mode moves inside the developed jet region. It follows that the cross-
stream wavenumber, goes to zero, so the wavelength may become larger than the envelope scale. According to numerical
results, other azimuthal modes no longer generate sound in the near field.

Finally we note that the generalization of these concepts to subsonic jets is an open question (see Cooper and Crighton [22]
and Crighton and Huerre [23] for a discussion of superdirective sources in low-speed jet®) &+6randw; = 0, the branch
cut K is identical with the imaginary axis and one can use the Hilbert transform of the perturbation to reduce the analysis to
positive wavenumbers (for instance, see Huerre and Monkewitz [24]).

This study has been supported by the french government and by ONERA.
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Appendix. Equation outsidethejet

In this appendix Eqg. (2.4) to be solved outside the jet is obtained from equations of motion. On factoring out the exponential
dependence oA andr the governing equations for the spatial past= (u,, p,) of the solution are obtained from (2.1a)
and (2.1b). With respect to a cylindrical coordinate system, #) centred at the nozzle exit and the corresponding velocity
componentsu,, v,, wy), the governing equations are

. Uoo 0 190
iy 4 2 B 1 On, (Ala)
r or Poo 0X
. Uoo 0 v 19
Ciwovy 4 08 _EVeo, 1 OPn (A.1b)
r or r2 Poo OF
0 1
_|wwn+8v_oo Wn w_oownz_ — |npn’ (Allc)
ar r2 Pool”
EVo0 OPn 1 /0v, v, Inw, Ouy,
—I ——t —|—+— — ) =0. A.1d
@pn + ar M2<8r r+ r +8x ( )

Substitution of (A.1a), (A.1b) and (A.1c) into (A.1d) it is straightforward to find that the equation to be solved can be cast into
the form

= 2 2 = 2
Voo M a 190 Voo M a
— (545, [ 22T 22 T 952200 i A2
(R,Ooo< R ) <3R2 RaR) RT R w,oooaR Un, (A.2)

where the outer variableR and X are defined byR = §g(¢)r and X = §x (¢)x. The order function$g anddy are real,
continuous functions of in a neighbourhood of the origin and such thgt~ 5 far away from the center of the jet.
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