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ABSTRACT

In this article, we use a linear biglobal stability approach to identify the intrinsic instability
modes that are responsible for triggering large thrust oscillations in long segmented solid
rocket motors. Corresponding theoretical predictions compare very favorably with existing
experimental measurements acquired from subscale motors tests and cold gas experiments.
Specifically, the frequency signatures of the thrust oscillations, which form distinct frequency
paths, are found to be directly connected to the emergence of the intrinsic instabilities of
the flow. When these are coupled with the natural acoustic modes of the chamber, large
amplitude oscillations are triggered. After undergoing spatial amplification, these oscillations
depreciate with the passage of time. To further understand the results obtained from theory,
DNS calculations of the rocket motor are performed. These simulations provide evidences of
the existence of a coupling mechanism between acoustic modes and eigenmodes. This gives
rise to a new physical understanding of the thrust oscillations phenomenon.

1 INTRODUCTION

For several years, thrust oscillations which oc-
cur in solid rocket motors, especially in the

P230, have been extensively studies thanks to dif-
ferent approaches. One can distinguish three main
kind of approaches. First, experiments, based on
subscale solid rocket motors or cold gas facilities,
have provided a detailed data base which can be
used for validating models. Moreover, simple test
cases led to the identification of a particular phe-
nomenon, called VSP (acronym for Parietal Vortex
Shedding), which is suspected to be responsible of
the arising of the thrust oscillations. The second
approach is based on numerical simulation. In spite
of the fact that the numerical reproduction of the
thrust oscillations seem to be out of reach, some
contributors have performed simulations in which
VSP exist, thus confirming the measurements. The
last approaches used to study the thrust oscillations
rely on theoretical models such as perturbation cal-
culations. In particular, recent developments [1],
involving the biglobal linear stability analysis, have

given a new insight upon the thrust oscillations phe-
nomenon. Thanks to this approach, the frequency
signature of the thrust oscillations, characterized by
frequency paths, can be well predicted. In addi-
tion, successful comparisons [2] with subscale solid
rocket motors measurements [3] have proved the rel-
evance of this theory. Likewise, cold gas experi-
ments, conducted by G. Avalon [4], which provide
a large amount of data in a configuration close to
the theoretical model, have also led to very good
agreement.
Thanks to these results, a new understanding of the
thrust oscillations arising has been revealed. In par-
ticular, the intrinsic modes of the flow, highlighted
by the linear stability theory, are believed to be cou-
pled to the acoustic modes of the motor. To further
investigate this possible coupling mechanism, DNS
have been performed with the use of the ONERA
code CEDRE.
This paper is organized as follows. First, the basis
of the linear stability theory will be given. Then,
the numerical procedure for the DNS calculations
will be explained. Finally, the last part will dis-
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cuss the results and in the conclusion the basis of
a scenario leading to the triggering of the thrust
oscillation will be exposed.

2 BIGLOBAL LINEAR STABILITY
ANALYSIS

2.1 Mean Flow Model

First we select a model flow to represent the steady-
state profile established in a solid rocket motor. The
simulated geometry corresponds to a semi-infinite
cylinder of radius R. A steady, incompressible fluid
is injected through the sidewall at a constant and
spatially uniform velocity Vinj . The flow enters in
the radial direction r, thus simulating the gas ejec-
tion at the burning surface of the propellant. The
spatial coordinates and the velocities are made di-
mensionless with respect to the radius R and the
wall-injection velocity Vinj . Although the Taylor-
Culick model corresponds to a semi-infinite cylin-
der, ours is truncated at x = Xe, thus forming a
finite chamber that can be practically simulated us-
ing a computational code named CEDRE (Calcul
d’Écoulements Diphasiques Réactifs pour l’Énergéti-
que). This code is developed at ONERA to serve
multiple functions, including the calculation of the
mean flow field in a user-designated solid rocket
motor chamber. CEDRE incorporates innovative
techniques, such as the generalized unstructured ap-
proach, to offer a unique computational platform for
simulating complex problems with reactive multi-
physics. More details on the computations can be
found in subsection 3.1.

Figures 1(a) and 2(a) provide three-dimensional
views of the mean axial and radial velocity com-
ponents computed at a dimensionless Xe = 8 and
Vinj = 1 m/s. One notes that this flow closely
resembles the Taylor-Culick model [5, 6] except in
the fore-end region where a boundary layer devel-
ops in fulfilment of the no-slip requirement at the
headwall (see [7]). The CEDRE-based solution is
computed in the (x, r) plane assuming axisymmet-
ric, rotational, laminar flow. The agreement ob-
tained between the computed flow and the Taylor-
Culick profile confirms the essentially incompress-
ible character of the flow. While a compressible
solution for the Taylor-Culick problem has been re-
cently developed by [8], it is not employed here
due to the relatively small velocities characterizing
our problem. Furthermore, experimental measure-
ments obtained through ONERA’s cold gas facility
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Figure 1: Longitudinal components of the velocities
of the basic flow Ūx and of the perturbation ûx (real
part). Here the initial amplitude A and time t of
(3) are t = 0 and A = 0.01A0.
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Figure 2: Radial components of the velocities of the
basic flow Ūr and of the perturbation ûr (real part).

VALDO [4] provide an additional avenue for vali-
dation, being in agreement with our model. Note
that VALDO uses a cylindrical chamber of radius
R0 = 0.03 m made of poral (bronze porous mate-
rial), thus providing the possibility to vary Vinj from
0.6 m/s up to 2 m/s. The length of the chamber Xe

in VALDO can also vary from 11.2R0 to 22.4R0.
Thus, the injection-based Reynolds number, defined
as usual by Re = ρRVinj/µ, ranges between 1, 200
and 4, 000 in the VALDO facility. Note that the
Reynolds number is the only group parameter that
remains in the Navier-Stokes equations.

2.2 Biglobal Fluctuations

The stability analysis is based on a perturbation
technique that considers any physical quantity Q to
be a superposition of a mean (steady) variable Q̄
and a fluctuating, time-dependent part q. If solu-
tions exist for q, they will be called intrinsic in-
stabilities of the mean flow. The decomposition
Q = Q̄+q is introduced into the Navier-Stokes equa-
tions which, after some simplifications and cancel-
lations, are split into a linear system of partial dif-
ferential equations (PDEs). These PDEs prescribe
the motion of time-dependent disturbances q. In
the linearized system, the mean flow and its deriva-
tives define the main coefficients. Next, the biglobal
instability theory is applied. Accordingly, any per-
turbation q may be judiciously expressed as :

q = q̂(x, r)ei(nθ−ωt) (1)

This unsteady variable representation is consistent
with the mean flow being dependent on both x and
r. It is spatially more accurate than one-dimensional
approximations in which q̂ is taken to be a function
of the radial coordinate only. In equation (1), n is
an integer that denotes the azimuthal wave number,
an index that vanishes for strictly axisymmetric dis-
turbances, θ stands for the azimuthal angle, and ω
represents the complex circular frequency. While
its real part ωr reproduces the circular frequency of
oscillations, its imaginary part ωi controls the tem-
poral growth rate.

As we take a first look at this problem, we
focus our attention on the axisymmetric models for
which n = 0. This case is not restrictive because
higher tangential modes tend to be less critical from
a stability standpoint.
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Figure 3: Set of eigenvalues in the complex (ωr, ωi)
plane for Re = 1975. Two cases are shown : Xe = 8
(squares) and Xe = 10 (triangles).

2.3 Stability Identification Procedure

The use of n = 0 enables us to define a stream func-
tion ψ for the perturbation. In fact, the linearized
Navier-Stokes equations written for the stream func-
tion ψ lead to a fourth order PDE (E) in (x, r). This
equation can then be solved for (x, r) ∈ [0, Xe] ×
[0, 1]. As boundary conditions are imposed on the
stream function, a suitable outflow condition is for-
mulated at x = Xe following [9] and [10]. After
discretization in the computational domain, (E) is
written as a generalized eigenvalue problem A Ψ =
ω B Ψ. Then, Arnoldi’s algorithm is implemented
to the extent of generating both problem’s complex
eigenvalues ω and their associated eigenfunctions
[11]. The set of complex eigenvalues ω defines the
spectrum of the stability problem. In the interest
of clarity, a sample set of complex eigenvalues is
showcased in figure 3 for Re = 1975. It should be
noted that for each calculated eigenvalue ω in fig-
ure 3, a companion eigenvector Ψ is obtained with
its components representing the discretized values
of the associated eigenfunction ψ̂(x, r). In relation
to axial and radial velocity eigenfunctions, one has :

ûx =
1
r

∂ψ̂

∂r
and ûr = −1

r

∂φ̂

∂x
(2)

The perturbation q = q̂e−iωt will therefore con-
tain the essential fluctuating flow ingredients such

as ux, ur, p and their derivatives; it is referred to
as an instability mode, being different for each ω.
Once the results of the stability analysis are recast
into dimensional quantities (using the constant pa-
rameters R and Vinj), a physical perturbation q for
a given mode ω = ω0 can be written as :

q = Aq̂ei
Vinj

R ω0t

= A [(q̂)r cos(2πft) + (q̂)i sin(2πft)] eνt

with f = Vinj

2πRω
0
r and ν = Vinj

R ω0
i

(3)
where ω0 = ω0

r + iω0
i and A represents the

initial amplitude of the perturbation, an initially
unknown value. There is no need to specify the
initial amplitude A as long as q is a solution of a
linear system.

Two major results stemming from the stability
analysis can be immediately pointed out. First, we
note that the spectrum is discrete. As such, only a
discrete set of circular frequencies exists for which
unstable disturbances/waves can develop from the
main flow. Second, all of the eigenvalues ω bear a
negative imaginary part. This implies that all of
the spatially unstable modes will be exponentially
damped in time. Their associated eigenfunctions
will, however, grow exponentially in the streamwise
direction.

The spatial growth of the oscillations is illus-
trated in figures 1(b) and 2(b); these present the
spatial evolution of the real part of the eigenfunc-
tions ûx and ûr for the eigenvalue ω0 = 40.409 −
9.164i andXe = 8. Without having been prescribed
in the theory (see (1)), the three-dimensional plots
clearly show a strong (exponential-like) amplifica-
tion in the streamwise direction. Thus for a given
eigenvalue, two counteracting mechanisms are seen
to coexist : a temporal decay affecting the pertur-
bations as time elapses and a spatial growth in the
perturbed amplitudes as wave propagation intensi-
fies in the longitudinal direction x.

2.4 Mode Dependence on Motor Length

So far, the character of the instability modes has
provided a new physical understanding of the mech-
anisms that drive the thrust oscillations in solid
rocket motors. As confirmed by [12], the frequency
paths recovered in all subscale and full scale motors
are caused by the emergence of the instability modes
of the flow (also called intrinsic instabilities). The
emergence is attributed to the coupling between the
stability modes and the natural acoustic frequen-
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cies of the motor. The instability modes are excited
and then amplified by the acoustic sources. After
inception, they undergo temporal depreciation as
predicted theoretically. However, despite the new
physical insight gained from linear stability analy-
sis toward elucidating the origination of the thrust
oscillations, a question remains unresolved. As one
may infer from figure 3, the eigenvalues appear to
depend on the length of the domain Xe. So by
changing the length of the domain, a shift in com-
plex eigenvalues is detected despite the invariance
of the mean flow. Given no established explanation
for such behavior, it may be speculated that the size
dependence is a spurious artefact of the numerical
procedure, thus calling into question the whole va-
lidity of the stability analysis. To better understand
this sensitivity to Xe, an independent approach is
resorted to, specifically, that of Direct Numerical
Simulation (DNS). Consequently, besides the inves-
tigation of coupling mechanism, numerical simula-
tion should first confirm this dependence on motor
length.

3 DIRECT NUMERICAL SIMULATION

As alluded to earlier, we have performed extensive
DNS computations with the use of ONERA’s code
known as CEDRE. The space discretization in CE-
DRE is based on a finite volume approach that em-
ploys an upwind Roe scheme with a second order
extension (MUSCL scheme with Van Leer limiter).
A complete description of the code is given by [13]
and more specific information concerning code val-
idation for rocket motor simulations may be found
in a survey [14].

For the present study, laminar Navier-Stokes
computations are carried out. In the interest of
establishing realistic baseline computational cases,
the characteristic length and velocity are chosen
to match those of in the VALDO facility. So in
the DNS input file, we use a chamber radius of
R = R0 = 0.03 m and an injection velocity of
Vinj = 1 m/s.

Four meshes are successively tested to the ex-
tent of establishing grid independence. Our sample
results for Xe = 8R are performed with a grid that
is composed of 301 × 161 nodes (for Xe = 10R the
grid is composed of 351 × 161 nodes such that the
thickness of the cells at the headend is conserved
compared to case Xe = 8R). Furthermore, cosine
repartition is employed such that the thickness of
the cells on the boundaries is refined down to ap-

proximately 3 µm. Note that as the considered val-
ues of Xe are small enough to maintain a laminar
flow, 2D DNS computations can be performed with-
out restrictions on the results except the axisym-
metric property.
3.1 Computing the Mean Flow

An implicit time scheme is used with a fixed value
of the Courant-Friedrich-Levy (CFL) number. Us-
ing CFL = 10, steady-state runs are conducted for
the purpose of computing the basic flow components
that are needed for the linear stability calculations.
While it is possible to use the Taylor-Culick approx-
imation, we opt for the computed solution because
of its ability to satisfy the headwall boundary condi-
tion. Once the computations are confirmed to have
reached a converged state, the steady flow is re-
trieved in discrete fashion and put into the stability
code, thus supplanting the Taylor-Culick formula.

In principle, a no-slip condition at x = 0 is
essential for a viscous fluid, a condition that is not
observed by the Taylor-Culick profile. Nonetheless,
the boundary layer that develops at x = 0 only af-
fects the flow in the vicinity of the headwall. In
this neighborhood (see figures 1(b) and 2(b)), the
fluctuations are nearly zero, and so the use of the
Taylor-Culick solution continues to be a suitable ap-
proximation : it leads to practically identical stabil-
ity results (in terms of circular frequency ωr). For
further detail on this issue, the reader may refer to
[7].

3.2 Unsteady Calculations

To compute the unsteady fields, an explicit time
scheme is used with a time step of ∆t = 5× 10−9 s.
The corresponding maximum CFL number is less
than 1. The objective is to reproduce the coupling
between acoustic modes and intrinsic modes sus-
pected to be responsible of the thrust oscillations.

3.2.1 Code validation

Before performing such a computation, a validation
test case is chosen in order to check the ability of the
CEDRE code to reproduce the behavior of an intrin-
sic instability. Thus, the strategy is to superimpose,
at the initial time, an instability mode ω = ω0,
extracted for example from figures 1(b) and 2(b),
where ω0 = 40.409− 9.164i, on the DNS calculated
basic flow, illustrated in figures 1(a) and 2(a). The
initial time t and amplitude A of (3) are chosen as
t = 0 s and A = 0.01A0, where A0 is the peak value
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attained by the longitudinal component Ūx of the
mean flow. It may be important to note that the
pressure perturbation of the stability mode ω = ω0

is not superimposed on the pressure distribution of
the mean flow, being very small in amplitude. At
first glance, the superposition process may appear
to be simple. In actuality, the overlapping of the
mean and unsteady components proves to be quite
challenging. It requires careful grid projections that
do not introduce artificial errors. It also requires
special attention to be paid to the boundary condi-
tions. Once the superposition is resolved, the un-
steady DNS computations are started. The origin
of time is set at t = 0 s. At t = 0.02 s, that is to say
after 4, 000, 000 iterations, our computer runs are
stopped and their output exported. Signals from
different virtual sensors are extruded and analyzed.
As the purpose of this paper is not addressed to code
validation, only a few results will be given here. A
complete description of different test cases can be
found in [15] and [16]. To illustrate the results pro-
duced by our numerical strategy, two cases are re-
tained. Case 1 corresponds to the superposition of
eigenmode ω0 = 40.409−9.164i in a chamber length
Xe = 8R = 0.24 m whereas case 2 corresponds
to the superposition of eigenmode ω0 = 40.367 −
7.302i in a chamber length Xe = 10R = 0.3 m,
see 3. Figures 4(a) and 4(b) present comparisons
between signals from specific sensors located inside
the chambers and the theoretical evolution given
by (3). These figures clearly demonstrates the abil-
ity of the CEDRE code to simulate the evolution
of eigenmodes. In fact, only the modes shapes are
introduced at t = 0 in the computation, the circular
frequency and the temporal damping being not pre-
scribed. The observed perfect matchings also con-
firms the mode dependance on the motor’s length
Xe, see paragraph 2.4.

3.2.2 Simulating the coupling between acoustic mo-
des and eigenmodes

Now that the code has been validated for eigen-
modes simulations, one can consider simulating cou-
pling with acoustic modes. The idea is to repro-
duce the crossing of the frequencies of an acous-
tic modes and an eigenmode. As the frequency
of an acoustic mode is only depending on the mo-
tor length Xe whereas an eigenmode one depends

on the ratio
Vinj

R
, the easiest way to achieve our

goal is to use unsteady boundary conditions. The
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domain length Xe and the radius R will be fixed,
while the spatially constant injection velocity Vinj ,
imposed on the lateral wall, will range linearly from
0.98 m/s to 1.02 m/s during the computation. With
these values, the frequency of the eigenmode ω =
68.679 − 7.594i is expected to evolve from 357 Hz
to 371 Hz. For Xe = 8R = 0.24 m, the frequency
of the first acoustic mode is 363 Hz. Thus, using an
unsteady injection velocity, the desired frequency
crossing will happen as it happens during a live solid
rocket motor firing because of the propellant regres-
sion. Considering a time step of ∆t = 5 × 10−9 s
and a final time t = 0.08 s (16.000.000 iterations),
the frequency variation speed for the eigenmode is
about 180 Hz/s. In a similar configuration, the ex-
pected coupling has been observed in the VALDO
facility but for a variation speed of 30 Hz/s. One
can fear that such an high variation speed compro-
mises the coupling effectiveness.
An other issue concerns the existence of eigenmodes
in the computations. To simulate the coupling with
an acoustic mode, the eigenmode ω = 68.679 −
7.594i must be present in the simulation. As ex-
plained earlier, these eigenmodes are temporally sta-
ble and so they need to be excited to exist. A con-
tinuous noise in the computation can allow the exis-
tence of several eigenmodes at low amplitude levels
without leading to the amplification of a particular
eigenmode which would prevent the expected cou-
pling. To do so, a small mesh distorsion is intro-
duced at the injection wall. The mesh distorsion
associated with a wall normal injection boundary
condition will create an injection noise suitable for
exciting several eigenmodes.
An initial harmonic distribution of the first ten acous-
tic modes is superimposed to the mean flow calcu-
lated for the fixed injection velocity value Vinj =
0.98 m/s. More precisely, only the pressure distribu-
tion is superimpose to the mean flow with an ampli-
tude of 0.001Patm, Patm being the atmospheric pres-
sure imposed at the exit x = Xe. Finally, the com-
putation is started from this superimposition and
stopped after only 12.000.000 iterations. At a first
glance, the results appear to be mainly composed by
noise. In fact, all the signal ux, ur or p for the whole
set of sensors exhibit the same amplified frequency
f = 6050 Hz. A more careful analysis revealed a be-
havior similar to an intrinsic instability but without
any interest regarding our goal. To eliminate this
frequency, the signals are filtered thanks to a But-
terworth filter of order 5 with a cutting frequency
fc = 2000 Hz. In addition, the continuous part of

the signals has been removed in order to avoid accu-
racy problem in the low frequency range during the
later time-frequency analysis. Note that the contin-
uous part is only linked to the linear evolution of
the injection velocity Vinj .
Short Time Fourier Transforms (STFT) are per-
formed on different sensor signals.

Figures 5(a) and 5(b) provide the results ob-
tained from radial velocity signals for two differ-
ent sensors locations ∗. It is interesting to focus on
the radial velocity component, because the possible
fluctuations that can exist can only be attributed
to the emergence of an eigenmode. In fact, the
acoustic radial velocity in such a configuration is
almost zero as the Mach number is low, see [17].
The figures clearly show the emergence of two dis-
tinguished eigenmodes. Around t = 0.03 s, one ob-
served the expected emergence of eigenmode ω =
68.679 − 7.594i. The frequency crossing has lead
to the growing of this eigenmode, thus confirming
the existence of coupling mechanism between acous-
tic modes and intrinsic instabilities. Note that the
emergence happened earlier in the computation com-
pared to the theoretically expected time t = 0.04 s.
The presence of noise may have slightly affected the
mean flow and thus modified its intrinsic instabili-
ties.
In addition to the desired amplification of eigen-
mode ω = 68.679 − 7.594i, one observes a previ-
ous amplification corresponding to the circular fre-
quency ω = 62 close to those of the neighboring
eigenmode, see 3. The reason of this emergence
is not clear. To learn more about it, and also to
confirm the emergence of eigenmode ω = 68.679 −
7.594i, figures 6(a) and 6(b) give the results ob-
tained for the axial velocity component and the
pressure signals of a specific sensor. The emergence
of eigenmode ω = 68.679− 7.594i is retrieved. The
signal of figure 6(a) suggests that the first amplifi-
cation also implies the first acoustic mode. In fact,
the shape of the signal ressembles the acoustic sig-
nature that can be seen at the very beginning of the
simulation. Up to now, there is no clear explanation
for this amplified part of the signal. Non linearity
can be involved in this observation.

∗Because the eigenmodes are exponentially amplified in
the x direction, significant amplitudes are only reached near
the exit section. For clarity reasons, it is thus preferable to
present the results extracted from sensors signals located in
this area.
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4 CONCLUSION

In this paper, DNS computations showing the pos-
sible existence of a coupling between acoustic and
intrinsic modes in a solid rocket motor have been
presented. This major result confirms the assump-
tions sprang from the linear stability theory results.
When an eigenmode fall close to a natural frequency
of the motor, a significant amplification is noted
that can lead to appreciable wave steepening. Con-
versely, when the eigenmode is sufficiently spaced
from the chamber’s natural frequencies, no appre-
ciable amplification is seen. After a short growing
phase, the eigenmode is then damped with the pas-
sage of time. This behavior is illustrated on fig-
ure 3.2.2 for firing 24 of the so-called subscale mo-
tor LP9 [3]. The amplifications of intrinsic insta-
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Figure 7: Pressure signal (bottom) and its STFT
(top) of firing 24 of subscale motor LP9. The eigen-
mode frequencies are reported on the STFT as solid
lines whereas the first longitudinal acoustic mode
one is drawn as a dotted line.

bilities, due to the frequency crossing with the first
longitudinal acoustic mode, are clearly visible. The
measured amplifications of the pressure signal corre-
spond to the eigenmode frequencies which are ruled

by the ratio
Vinj

R
. Note that several amplifications

coexist, implying several different modes and thus
confirming the implication of the intrinsic instabil-
ities.

Consequently, a consistent scenario is now avail-
able for explaining the occurrence of the thrust os-
cillations in a solid rocket motor. Further numerical
simulations may solve the remaining questions such
as the coupling mechanism in order to find out a
possible way to control the thrust oscillations.
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