
aeroacoustics
volume 5 · number 4 · 2006

Investigation of the PSE approach for
subsonic and supersonic hot jets.

Detailed comparisons with LES and
Linearized Euler Equations results

by

Estelle Piot, Gregoire Casalis, 
Frederic Muller and Christophe Bailly

reprinted from

published by MULTI-SCIENCE PUBLISHING CO. LTD., 
5 Wates Way, Brentwood, Essex, CM15 9TB UK

E-MAIL: mscience@globalnet.co.uk
WEBSITE: www.multi-science.co.uk

Aero 5-4_Piot  12/12/06  10:35 am  Page 1



Investigation of the PSE approach for
subsonic and supersonic hot jets. 

Detailed comparisons with LES and
Linearized Euler Equations results

Estelle Piot*, Gregoire Casalis†, 
Frederic Muller‡ and Christophe Bailly§

*†ONERA DMAE, 2 av. Ed. Belin, BP. 4025, 31 055 Toulouse Cedex, France

*PhD student, estelle.piot@onecert.fr, †Research Engineer, gregoire.casalis@onecert.fr

‡ONERA DSNA, 29 av. D. Leclerc, 92322 Châtillon Cedex, France

PhD student, frederic.muller@onera.fr

§Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully Cedex, FRANCE

Professor, christophe.bailly@ec-lyon.fr

ABSTRACT
A Parabolized Stability Equation (PSE) method is applied to hot inviscid Mach 0.7 and Mach 2
axisymmetric jets. The Parabolized Stability Equations are derived from the linearized Euler
equations. Spatial development of pressure perturbations is computed in the vicinity of the jet,
and the associated radiated noise is obtained by solving the wave equation. A Large Eddy
Simulation is performed on the subsonic jet and compared with the results obtained by the PSE
analysis of the LES-computed mean flow. Good agreement is found for the spatial growth of
pressure instability waves, the spatial damping being slightly under-estimated in the PSE
analysis. Only LES predicts acoustic radiation, which may thus be created by the turbulence
cascade rather than by the Kelvin-Helmholtz instability waves. PSE method is then applied to the
supersonic jet and compared to solutions of Linearized Euler Equations. The common mean flow
is analytical. A very good agreement is found for pressure perturbation evolution and for
directivity and levels of acoustic radiation.

1. INTRODUCTION
Over the past 30 years, jet noise has been the subject of many experiments and many
theoretical models have been tested to understand the physics of the phenomenon.
However despite all these studies and despite the apparent simplicity of a jet, it is still
very difficult to correctly predict a jet noise radiation. It is now generally accepted that
jet noise is created by both fine and large-scale turbulence structures (Tam 1995). The
dominant part of subsonic jet noise is produced by fine-scale turbulence, whereas large
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turbulence structures are dominant noise sources of supersonic and high temperature
jets. For imperfectly expanded supersonic jets, additional noise is created by shock cell
structures which are formed in the jet plume. One part of this noise is called screech
tones noise, the other broadband shock-associated noise. Tam et al. (1996, 1994)
showed that for both subsonic and supersonic jets, large turbulence structures generate
noise. Since the work of Tam & Burton (1984), it is known that these structures are in
fact instability waves, which radiate sound when they propagate downstream at
supersonic speed relative to ambient conditions. Tam and Burton developed a matching
asymptotic expansion method to calculate the noise radiation in the far-field. To
calculate the instability wave evolution, several methods were developed, especially the
classical locally parallel-flow stability theory or the multiple scales method which takes
into account the slowly divergence of the jet flow (Crighton & Gaster 1976, Saric 1975,
Morris 1981).

In this work, the Parabolized Stability Equations (PSE) will be used to calculate the
instability waves. The PSE formulation was first introduced by Herbert & Bertolotti(
Herbert & Bertolotti 1987, Herbert 1991, Herbert 1993) to study the streamwise
evolution of single or interacting instability modes in boundary layers. This approach is
based upon the decomposition of each mode into a slowly varying amplitude function
and a wave function with a slowly varying wavenumber. The decomposition is
introduced into the linearized Navier-Stokes equations, which are then parabolized by
neglecting some terms. Yen and Messersmith successfully applied this PSE approach to
the prediction of jet instabilities in both an incompressible (1998) and compressible
(1999) jet. Malik & Chang (1997 and 2000) studied a cold Mach 2.5 supersonic laminar
jet, with both linear and non-linear PSE. Balakumar (1998) performed on a cold Mach
2.1 supersonic high Reynolds number jet a linear PSE calculation coupled with a
solution of the wave equation in the far-field; he found good agreement between his
acoustic prediction and previous experimental measurements. More recently, Lin et al.
(2004) applied PSE analysis on a high Reynolds number Mach 0.9 heated jet. They
solved the wave equation to compute the acoustic field, and obtained good prediction of
the aft angle jet noise radiation. Bertolotti & Colonius (2003) discovered also in a
heated Mach 0.9 jet so called “core modes” which travel supersonically within the jet
potential core. In all these studies, comparisons have only been made with experimental
acoustic measurements. But other methods exist to predict noise radiation, especially
high-fidelity numerical simulations such as Direct Numerical Simulation (DNS)
(Mitchell et al. 1999), Large Eddy Simulation (LES) (Andersson et al. 2005), or
methods which solve directly the linearized Navier-Stokes (Mosheni et al. 2002) or
linearized Euler equations (Mankbadi et al. 1998). Some studies compare PSE results
with results from these methods, especially Cheung & Lele (2004) and Day et al. (2001),
who compare PSE calculations with DNS results. They can then not only compare
acoustic pressure radiation, but also pressure eigenfunctions in the near-field. But these
comparisons are made for mixing layers, and at low Reynolds numbers, because of the
computational cost of DNS.

In this paper a Mach 0.7 subsonic jet and a Mach 2 supersonic jet are considered.
Both are hot high-Reynolds number turbulent axisymmetric jets. On the subsonic jet a
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Large-Eddy Simulation is performed, and the Linearized Euler Equations are solved for
the supersonic jet. We study for both jets the streamwise growth of a linear Kelvin-
Helmholtz instability wave by solving the associated Parabolized Stability Equations,
which are derived from the Euler equations. On the contrary, above-mentioned PSE
studies on high-Reynolds number jets use equations derived from the complete viscous
Navier-Stokes equations, but in which the Reynolds number is fixed at a large value.
The acoustic pressure in the far field is also calculated by solving the wave equation
with the pressure obtained from the PSE as the inner boundary data. For both jets
pressure evolution obtained by the PSE computations is compared to the Large-Eddy
Simulation or Linearized Euler Equations results.

The objective of this paper is to determine whether the Euler-based PSE equations
are valid and whether their both near-field and acoustic pressure evolution prediction
compares well to the Large Eddy Simulation or Linearized Euler Equations results, not
only in the region where the mean flow is unstable, but also in the stable region. We
first give a detailed description of the PSE method based on Euler equations, and of
acoustic calculation; the numerical implementation is explained, and the code is
validated against previous published results and classical locally parallel- flow stability
method. Then the method is applied to a subsonic hot jet, and compared to a LES
simulation of the same jet flow. Finally comparisons of the PSE-computed near-field
and acoustic pressure with Linearized Euler Equations solution on a supersonic hot jet
are discussed.

2. PARABOLIC STABILITY EQUATIONS FOR COMPRESSIBLE
INVISCID FLOW
2.1 The linearized Euler equations
In the present study, an inviscid jet flow is considered, and the cylindrical coordinate
system is used, (r, θ, x) denoting radial, azimuthal, and streamwise directions
respectively. The evolution of the flow field is governed by the Euler equations written
for a compressible gas :

(1)

where u = (ur, uθ, ux) is the velocity vector, ρ the density, p the pressure, S the entropy
and t the time. Using the perfect gas assumption, the entropy is thus given by S = Cv ln
p/ργ, the specific heat capacity at constant volume Cv and the specific heat ratio γ being
constant. The convention whereby subscript “j” refers to the conditions at the jet exit is
used, and the lengths are non-dimensionalized by the diameter Dj, the velocity by the
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streamwise exit velocity uj, the density by ρj, the pressure by ρju
2
j, the time by Dj/uj, and

other variables by the corresponding jet exit conditions. For reading easiness, the
dimensionless Euler equations are written with the same notations as in Eqn (1).

We are concerned with the spatial evolution of a small perturbation inside the jet
flow. The linear stability analysis consists in decomposing the instantaneous value of
any variable q into a mean value q– and a small perturbation quantity q~:

(2)

The basic flow is assumed known, is steady and axisymmetric (independent of the
azimuthal angle θ, and without azimuthal component). Moreover the non-dimensional
mean pressure is assumed uniform in the solution domain, and is equal to 1/(γM 2

j) with
the scaling used in this paper.

Substituting Eqn (2) into Eqn (1), and subtracting from it the steady mean flow
equations, the linear disturbance equations can be expressed in the form :

(3)

where φ is the perturbation vector :

Equation (3) remains valid as long as the fluctuating quantities amplitudes are small
in comparison with the corresponding basic flow amplitudes. Matrices A, B, C, D, and
E are composed of mean flow quantities, which are functions of the coordinates r and x
only.

2.2 Conventional stability approach
The conventional stability theory has been used for axisymmetric jet flows for several
years, e.g. Michalke (1984) and Tam & Burton (1984) or more recently Millet & Casalis
(2002). This theory is usually called “linear parallel stability theory”, because the basic
flow is there considered as being locally parallel. This means that the mean quantities are
supposed to be r-dependent only, and that the mean radial velocity is neglected. Therefore,
when Eqn (3) is written at a specific streamwise location x, the matrices are independent
of x, θ, and t. The disturbance quantities can then be written in the normal mode form:

(4)

where ω is the frequency of the disturbance, k and m are the streamwise and azimuthal
wavenumbers, respectively. Here i stands for the square root of –1. Whereas ω and m are
real numbers, k is a complex number, whose imaginary part stands for the opposite of
the spatial growth rate of the disturbance.

As the amplitude function q̂ is a function of r only, when Eqn (4) is substituted in the
linearized Euler equations (3), an ordinary differential equation for q̂(r) is obtained.
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Associated to homogeneous boundary conditions (Tam & Burton, 1984), this system
corresponds to an eigenvalue problem with streamwise wavenumber k as the eigenvalue
and q̂(r) as the associated eigenfunction. This problem can thus be solved at each
chosen axial location, in a easy way as long as the spatial growth rate of the disturbance
is positive. But when the disturbance is spatially damped, the numerical computation
becomes difficult. Indeed, as explained by Tam & Burton (1984) or Michalke (1984) for
instance, the problem can then only be solved by extending the ordinary differential
equation into the complex plane : the equation, initially written with the real coordinate
r, is then written with a complex coordinate, which creates several technical difficulties.
Moreover, because of this extension, it becomes impossible to catch directly the
physical fluctuating amplitudes q̂(r) in the damped region.

2.3 Parabolized stability equations
For most of the practical applications, the mean flow varies slowly in the streamwise
direction. The idea of the Parabolized Stability Equations (PSE) approach, initially
developed by Herbert & Bertolotti (Herbert & Bertolotti 1987, Herbert 1991, Bertolotti
et al. 1992), is to take into account the non-parallelism of the flow by decomposing the
x-dependent terms of the disturbance quantities into a slowly varying shape (amplitude)
function and a rapidly wave-like part to obtain

(5)

In this generalized normal mode form q̂(r, x) is the slowly varying shape function, α
the complex streamwise wavenumber, and the azimuthal wavenumber m and the
disturbance frequency ω are constant real numbers, as for the local conventional
stability approach. x0 is the minimum streamwise value of the computational domain.
An analysis of Eqn (5) reveals that the streamwise change of the disturbance can be
absorbed into either the shape function or the exponential term containing the
streamwise wavenumber. This ambiguity must be resolved through the introduction of
an additional equation, which imposes a condition on the shape function such that most
of the waviness and growth of the disturbance are absorbed into the exponential term,
making the shape function q̂(r, x) slowly varying in x, and thus determining the value
of the streamwise wavenumber α.

The additional equation proposed by Herbert& Bertolotti (Herbert & Bertolotti 1987)
is called a normalization and consists in setting to zero the x-derivative of a given
integral norm, for example the norm based on the kinetic energy of the shape function.
The normalization based on this norm is then:

(6)

where * denotes complex conjugate. The choice of another specific normalization
would change the computed values of α and q̂(r, x), but not the value of the physical
disturbance q̂(r, θ, x, t), as explained by Herbert (1993). This is numerically proved in a
following section.
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Substituting Eqn (5) into Eqn (3), the parabolized stability equation is obtained:

(7)

where the (5×5) matrices Â, B̂, and Ĉ are explicitly given in appendix. They are
functions of the mean flow and its derivatives, and of ω, m, and α. The shape function
vector φ̂ is:

(8)

Equation (7) is a partial differential equation with respect to r and x. Indeed, the
mean flow is assumed to be weakly non-parallel, i.e. the mean flow variables are
functions of r and x, the mean radial velocity being small. Moreover, the streamwise
slowly varying assumption implies that all the x-derivatives of variables are small, and
that the term ∂2q̂/∂x2 is negligible. This property is used to justify the parabolicity for
the Navier-Stokes equations based problem. However, as an inviscid flow is considered,
the latter term never appears in our equation. A standard analysis of the mathematical
nature of Eqn (7) shows that a suffcient condition to be parabolic is that:

(9)

Whenever this condition is satisfied we can then claim that Eqn (7) is a parabolic
stability equation rather than a parabolized one. However we will still call Eqn (7) the
“PSE” equation.

At r = 0, since some terms in the PSE equation are singular the following boundary
conditions are used:

(10)

They are completed by the non-singular terms in the PSE equations, expressed at 
r = 0. In the far field r → +∞, the mean flow is uniform : u–r = u–x = u–θ = 0, and ρ– = ρ∞.
Neglecting all the derivatives in the streamwise direction, and after some substitutions,
Eqn (7) reduces to :

(11)

The other shape functions are proportional to p̂ or ∂p̂/∂r. Therefore in the far field the
pressure shape function takes the form of a Hankel function of the first kind and order m:
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(12)

where λ(x) is the positive square root of α2(x) – ρ∞w2Mj
2.

These Hankel-based boundary conditions are very accurate, though they do not
consider the non-parallelism of the problem. Moreover, they are valid as soon as the
mean flow becomes uniform. In the present computations, these boundary conditions
are imposed farther, at r ~ 10Dj.

If criterion (9) is satisfied, the PSE equation (7) is parabolic; a normalization is
mandatory but could be an arbitrary one. However the choice of the boundary conditions
Eqn (12) explains why the normalization given by Eqn (6) must be used. Indeed, this
normalization imposes that the exponential term of Eqn (5) controls the waviness and
growth of the disturbance, as it happens in the conventional parallel approach. For the
PSE computations the Hankel-based boundary conditions which assumes a basic
parallel flow are used. Consequently the PSE solution must be close to the conventional
parallel solution; this is forced by normalization Eqn (6).

2.4 Numerical techniques
The parabolicity of the governing equation (7) is the major advantage of the PSE
formulation.

Indeed, this permits to find the solution of the problem by a marching procedure in
the x direction. To compute the solution, we need to discretize the equations in both x
and r directions. The radial grid is partitioned into two domains, to obtain a good
accuracy around the location where the mean streamwise velocity presents an inflection
point. The interface between the two domains occurs just outside the lip-line of the jet,
at r/Dj = 0.506. A crucial aspect of this decomposition is the manner in which solutions
on contiguous domains are matched. To get good results, it is necessary to impose the
continuity of the shape functions and their r-derivatives at the interface of the two
domains. The r-derivatives are computed with a spectral collocation method, based on
the Chebyshev polynomials (Canuto, 1988). In the streamwise direction, a first order
backward Euler scheme is used.

As the problem is parabolic, the first step of the procedure is to start with a known
solution at x = x0, q̂(r, x0) and α(x0). This solution is the result of the linear parallel
stability theory at this location. We march then to the next station x = x0 + ∆x, and, using
α(x0 + ∆x) = α(x0) as initial guess, q̂(r, x0 + ∆x) is determined by solving Eqn (7). The
second step is to compute the new α(x0 + ∆x) from the obtained q̂(r, x0 + ∆x). Following
Herbert & Bertolotti, an iteration strategy is used, based on the normalization given by
Eqn (6) :

(13)

Here, the subscripts j and j + 1 refer to the x0 and x0 + ∆x locations, respectively. n
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indicates the iteration step number, v̂ is the vector of velocity shape functions [ûr; ûθ; ûx],
and Ω = [0; rmax] is the radial domain. At each iteration step, the shape functions are
computed from Eqn (7), a corresponding new α is computed from Eqn (13), and the
procedure continues until the change in α is less than some prescribed value (~ 10–6).
In the last step, after the convergence is obtained at this station, we march to the next
station, and repeat the whole procedure.

The global PSE system consists in the PSE equation (7), the normalization (6),
boundary conditions (10) + (12) and an initial value at x = x0. Equation (7) is parabolic,
but to compute the solution the additional normalization equation (6) is needed as
explained before. The global system is then nonlinear since normalization (6) is
nonlinear. However the global system is still linear with respect to an amplitude fixed
by the initial value : if φ̂ is solution, αφ̂ where a is a complex constant is also a solution.
But the system is not additive : if φ̂ 1 and φ̂ 2 are solutions, φ̂ 1 + φ̂ 2 is generally not a
solution. Besides the mathematical nature of the global PSE approximation is
questionable. Haj-Hariri (1994) performed a characteristics analysis of the viscous PSE
system that shows weak ellipticity of acoustic origin for αr ≠ 0, where αr is the real part
of the complex streamwise wavenumber α. This effect can be alleviated either by
dropping the pressure-gradient term ∂p̂/∂x  or by choosing a suffciently large marching
step to skip over the small upstream influence. In the present work the latter solution is
used. For marching with simple backward differences, Li & Malik (1996) (see also
Andersson et al. (1998) for an extended study of this issue) obtained the limit :

(14)

This condition implies that a maximum of 2π steps per disturbance wavelength is
allowed for the marching. But, as slowly varying shape functions are computed, this
step-size restriction does not cause problems about accuracy in the practical cases.

Whatever the choice of step size and normalization, the prediction by the PSE
analysis has to be the same, so long as the step size satisfies the stable marching
criterion. Figure 1 gives the evolution of the physical value of the fluctuating pressure
as function of the axial position x at a fixed radial position r/Dj = 0.5, in a test case
where the mean flow is hot and has a Mach number of 0.7 (case presented in section 3).
The plotted quantity corresponds to the real part of the left hand side of (5) for m = 0
and t = 0, with a fixed Strouhal number of St = 0.6. Three normalizations have been
tested ; N1 corresponds to (6), N2 is similar to N1 with in addition the contribution of the
pressure and the mass flux, N3 is a normalization based on the pressure amplitude only.
For the second normalization, two different step sizes have been considered. Figure 1
shows the insensitivity of the computation to step sizes and normalizations, which was
expected.

For the same mean flow, Figure 2 shows the insensivity to the choice of the starting
location x0. The pressure has been normalized so that its maximum value in the plane
(r, x) equals 100. Some transients are visible for r/Dj = 1.5, but they do not affect
significantly the downstream solution. For the jet flows which will be considered in this
work, the value x0 = 0.3 is chosen.
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2.5 Validation
Prior PSE studies of jets (Yen & Messersmith 1998, Balakumar 1998, Malik & Chang
1997, Bertolotti & Colonius 2003, Lin et al. 2004) are based on Navier-Stokes
equations. We need first to validate our PSE computations, which are based on Euler
equations. Present results are compared with published results of Yen & Messersmith
(1998), who have studied an incompressible axisymmetric jet flow, in both viscous and
inviscid cases. But even for the inviscid jet flow, their PSE equations are derived from
the Navier-Stokes equations. The mean flow is given by:
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Figure 1. Insensitivity to the choice of normalization and step size in x, r/Dj = 0.5,
St = 0.6, m = 0.

Figure 2. Insensitivity to the choice of the starting location x0, for St = 0.3 and m =
0. Left hand side figure corresponds to r/Dj = 0.5, right-hand side figure
corresponds to r/Dj = 1.5
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The mean radial velocity u–r(r, x) is computed from the continuity equation. To
simulate an incompressible case, our computations were performed for a Mach number
of Mj = 0.01. Figure 3 shows the results obtained by Yen & Messersmith (1998) and by
the present work. The different values on the x-axis are due to the used reference length,
which is Rj (the radius of the jet flow at the exit section) in Yen & Messersmith’s paper
and Dj = 2Rj in the present approach. The agreement between the two computations is
very good, which validates our numerical code in the incompressible case.

To validate the computations in the compressible case, a PSE analysis has been
performed for a cold jet (ρ–(r, x) = 1) of Mach number Mj = 0.8. The mean streamwise
velocity is:

where b(x) = max(0.01; 0.05x). The mean flow being very basic, a conventional stability
approach (explained in section 2.2) has been easily performed, even in the flow region
where the disturbances are damped. The result of this conventional linear stability
analysis at the streamwise location x0 = 0.3 was used to initialize the PSE marching
procedure. Figure 4 shows the pressure computations for both the conventional and PSE
analysis. The agreement between the two analysis is good, with similar trends in the
growing and damping of the disturbance. The slight differences may be attributed to the
non-parallel effects, which are only considered in the PSE analysis.

A PSE analysis has also been performed for the same mean flow as in Yen &
Messersmith (1999). It is a cold supersonic jet flow, the Mach number being Mj = 2.1.
The stagnation temperature is 294 K, and the Reynolds number is Re = 70000. Mean-
flow data have been reported by McLaughlin, Seiner & Liu (1980) and Troutt &
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Figure 3. Comparisons between some published (Yen & Messersmith 1998) results
(lines + full circles) and the present approach (lines) ; left hand side figure
corresponds to St = 0.5, right hand side figure to St = 0.3 (here the
Strouhal numbers are based on the exit radius, as in Yen & Messersmith
(1998)).
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McLaughlin (1982). The streamwise evolutions of h(x), b(x) and uc(x), which are
respectively the radius of the core region, the halfwidth of the mixing layer, and the jet
centerline velocity, have been computed by the same process as in Yen & Messersmith
(1999). The mean flow velocity profiles are then obtained thanks to the empirical
formulas used by Tam & Burton (1984) as well as by Yen & Messersmith (1999) and
Balakumar (1998) (who also studied the present jet). Figure 5 shows the computed h(x),
b(x) and uc(x). The results of Yen & Messersmith (1999) have been digitized, and the
extracted data have been overlayed with the current approach results. The comparison is
excellent.

aeroacoustics volume 5· number 4 · 2006 371

Figure 4. Streamwise variation of the pressure disturbance for conventional
stability and PSE solutions

Figure 5. Streamwise variation of h/Rj, b/Rj and uc/uj. The Yen & Messersmith
(1999) results are plotted in solid lines, our results are plotted in dashed
lines with square symbols
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The present PSE approach has been then applied on this mean flow. Figure 6 shows
the pressure gain over the axial domain along the jet lip line r/Rj = 1. Two Strouhal
numbers (here based on the jet exit diameter Dj) have been investigated. For each value
of St the results computed by the present approach are compared with the results
extracted from Yen & Messersmith (1999). The agreement between both methods is
reasonably good, which validates the present approach in the supersonic compressible
case. However it is important to notice that the present PSE approach is based on the
inviscid Euler equations, whereas the Yen & Messersmith (1999) method takes into
account the viscous terms. As for this jet the Reynolds number is moderate (Re =
70000), neglecting the viscous terms may not be totally justified, which could explain
the slight differences between the results. But in the next sections the Reynolds numbers
of interest will be much higher (more than half a million), and thus the viscous terms
will be negligible.

2.6 Wave equation
In the PSE studies based on Navier-Stokes equations (Yen & Messersmith 1998,
Balakumar 1998, Malik & Chang 1997, Lin et al. 2004, Bertolotti & Colonius 2003),
the PSE equations are parabolized by neglecting the terms in ∂2q̂/∂x2. This means that
the desired PSE solution is close to the normal mode form : the x and r coordinates are
not treated on an equal footing. As explained by Tam & Burton (1984), it is thus
necessary to construct a global solution which consists of both the acoustic and the non-
propagating hydrodynamic fluctuation components. That is why Balakumar (1998) or
Lin et al. (2004) solve the wave equation to propagate the PSE pressure solution into the
far field.

The PSE equations presented in this work are based on the Euler equations, but the
boundary conditions are chosen to get a PSE solution which is close to the normal mode
form, as explained previously in section 2.3. Therefore to compute the acoustic field,
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Figure 6. Streamwise variation of pressure gain along r/Rj = 1 for two Strouhal
numbers and for the two first azimuthal wavenumbers. The Yen &
Messersmith (1999) results are plotted in lines with full circles, our results
are plotted in lines without symbols
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the method developed by Tam & Burton (1984) and based on the wave equation is used.
The near pressure field can be expressed as:

(15)

where λ(η) is the positive square root of η2 – ρ∞Mj
2ω2 and g(η) the wavenumber

spectrum, given by:

(16)

Here p̂0(x) = p̂(r0, x) is the pressure distribution along the line r = r0 where the mean
velocity becomes almost zero. This pressure distribution is a result of the PSE
computation.

Not all the near-field pressure fluctuations are radiated into the far field as sound.
Following Tam & Burton (1984), a spherical coordinate system (R, χ, φ), centered at
the nozzle exit of the jet with the polar axis aligned in the flow direction, is used to find
the power of sound emitted. These spherical coordinates are related to the cylindrical
coordinates (r, θ, x) by

In the new coordinate system, and for large R, the following far-field pressure is
obtained by using the asymptotic form of the Hankel function and the method of
stationary phase :

(17)

Therefore the sound power D(χ) radiated in direction χ per unit solid angle by an
excited instability wave is :

(18)

where ηc = ������ρ∞Mjω� is the wavenumber associated to the ambient sound speed. The
physical interpretation of this wavenumber is that all the waves travelling with a
wavenumber smaller than ηc propagate with supersonic phase velocities relative to the
ambient sound speed. Only those waves radiate into the far field, the direction of
radiation being given by Eqn (18).

3 APPLICATION TO A HOT SUBSONIC FLOW AND COMPARISON
WITH LARGE EDDY SIMULATION RESULTS
3.1 Flow configuration
In the present section, a hot subsonic turbulent jet is considered, as previously studied
in Piot et al. (2006). The Mach number is Mj = 0.7, the ambient temperature and the jet
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temperature in the core region are T∞ = 280.4 K and Tj = 830 K, respectively. These
parameters lead to a large ratio between the outer and inner density : ρ∞/ρj = 3. This jet
flow exits from an axisymmetric nozzle of diameter Dj = 0.08 m with a velocity uj = 410
m/s. The Reynolds number based on the exit conditions is thus Re = 4 × 105.

3.2 Large Eddy Simulation procedure
A Large Eddy Simulation (LES) of the aerodynamic field of the jet is performed without
any subgrid model. The MILES (Boris et al. 1992) approach is employed, which means
that dissipation is ensured by the numerical scheme. The jet flow is developing freely
without any forcing at the inlet boundary condition. The natural instabilities of the flow
are excited by the numerical errors only. The present study has been conducted using a
second order ADI time scheme and a third order flux splitting spatial scheme. The
cartesian grid employed is relatively coarse (1.5 millions cells) and is designed to
propagate accurately Strouhal numbers less than St = 0.3. This choice of the grid
limitation was motivated by the computational limitations and the will to capture the
peak of directivity which has been measured experimentally to be around 30 degrees.
The acoustic spectrum maximum in this direction was measured to be around St ≈ 0.2,
and this is what the authors wanted to capture when the grid was designed. Therefore
the grid limitation of St ≈ 0.3 should be sufficient to solve qualitatively the noise from
the large scale structures. On figure 7, a turbulence spectrum is represented for a
location situated near the end of the potential core at x/Dj ≈ 3 and r/Dj ≈ 0.5. The k–5/3

slope is also plotted. As we can see on this picture, the scheme cut off is not steep at all,
it begins to be visible on the amplitude of the spectra around St ≈ 0.5 and significant
only above St ≈ 1. So the waves with a Strouhal number value above St = 0.3 are still
present in the computation, but they can undergo phase errors. Thus, some fine scale

374 Investigation of the PSE approach for subsonic and supersonic hot jets. 
Detailed comparisons with LES and Linearized Euler Equations results

Figure 7. Turbulence spectrum near the end of the potential core (at x/Dj ≈ 3 and
r/Dj ≈ 0.5) with the k–5/3 slope plotted in black.

Aero 5-4_final  11/12/06  5:44 pm  Page 374



structures are contained in the LES, but they can undergo dispersion and dissipation
errors. When the grid is projected on cylindrical coordinates, the meshing contains 30
points in the radial direction between r/Dj = 0 and r/Dj = 1, with a refinement around
the radial location of the axial velocity inflection point. Between the nozzle and the
potential core end Lc/Dj = 3.3, there are 65 points in the streamwise direction. The
nozzle is included in the computation to avoid special treatments at the inlet boundary
condition, but no attempt was made to resolve accurately the boundary layer over the
nozzle wall. Non-reflection at the outer boundary conditions is ensured by stretching the
grid far from the nozzle. More details about the numerical procedure are available in
Lupoglazoff (2002) and Biancherin (Biancherin 2002, 2003).

3.2.1 Governing equations
The compressible Navier-Stokes equations are solved in their conservative form, with a
perfect gas assumption. The filtered conservation equations of mass, momentum and
total energy per unit volume (hereafter denoted as ρE) are,

(19)

(20)

(21)

where the total energy E per unit mass is the sum of internal energy e(T) and kinetic
energy 12u·u. The filtered total energy per unit volume is ρE

–
= ρe(T)
–

+ 12
–
ρu · u

–
. Pressure

p is related to density ρ and temperature T through the state equation, p = RρT .
In these filtered Navier-Stokes equations, the dissipative fluxes τ= and ϕh include

subgrid modelization. If S0=
is the deviatoric (trace-free) part of the strain-rate tensor S,

(22)

the expressions for τ= and ϕ
–h are (neglecting some terms in the development of the

filtered quantities),

(23)

(24)

where the dynamic viscosity µ is given by the Sutherland’s viscosity law; once µ is
known, thermal conductivity κ is determined from the Eucken’s relation κ = µ(cp+5r/4),
with r = 287.1 J/(kg K). The specific heat at constant pressure cp is given by an empirical
polynomial function of the temperature.
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The type of modelization depends on the expressions used to compute µs and κs:

• The simplest approach is the Monotonically Integrated Large Eddy Simulation
(MILES) (Boris et al. 1992), where the subgrid dissipation comes only from the
numerical scheme,

(25)

• In the classical Smagorinsky (1963) model, the expressions for µs and κs are,

(26)

(27)

where S= = 12 (∇u= +t ∇u=) is the strain-rate tensor, Cs is the Smagorinsky constant (fixed
to Cs = 0.18) and Prt is the turbulent Prandtl number (with the value Prt = 0.9). Finally
∆ represents a norm of the mesh size : ∆ = ������∆x2 +�����∆y2�����+ ∆z2, where ∆x, ∆y, ∆z are the
step sizes of the cartesian grid.

Both modelizations have been tested and have given very similar results for this jet.
So, the MILES approach was chosen for the present study.

3.2.2 Numerical schemes
The temporal integration is based on a three levels scheme, with two parameters θ and
ξ, developed by Beam and Warming (1978). The quantities q at time n+1 are functions
of the same quantities at time n and n – 1 :

(28)

A second order implicit ADI (Alternating Direction Implicit) is obtained by taking θ
= 1 and χ = 0.5,

(29)

The spatial scheme belongs to the TVD-MUSCL family and is a third order upwind
scheme.

3.2.3 Modal decomposition procedure
The modal analysis of the results provided by the LES is performed by taking the
Fourier transform of the pressure field in time and in the azimuthal coordinate. First, the
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Fourier transform in the azimuthal coordinate is taken,

(30)

second, the Fourier transform in time is taken,

(31)

with ω = 2πf and m the azimuthal mode number. This is the pressure which is used in
the comparisons with PSE results.

The data used to compute the Fourier transform are stored with a time resolution of
∆t = 45×10–6 s on a time duration of 72 ms divided into four non overlapping blocks.
So the sampling frequency and the frequency resolution of the study are respectively fe
≈ 22 kHz and ∆f ≈ 55 Hz. There are sixty planes in the azimuthal direction with an
angular resolution of ∆θ = 6 deg., thus only the first 30 modes are accessible, which
does not induce a limitation for the following comparisons with the PSE.

3.3 Results and discussion
The mean flow computed by the LES has been used as input for the PSE analysis. Since
the LES grid is different a priori from the PSE grid, a preliminary work has to be done
before the PSE analysis. The following procedure is used. First the u–x and ρ– functions
are approximated by analytical functions at each LES grid x values by a standard least
square method. The calculated coefficients, which depend on x, are then smoothed by
spline routines. The u–r function is finally computed by a numerical integration of the
continuity equation at each x value of the PSE grid.

PSE calculations have been performed for several Strouhal numbers and azimuthal
wavenumbers. However, because of the LES grid construction, the LES results are only
accurate for low Strouhal numbers (St ≤ 0.3). Therefore LES computations results will
be presented in this section for two cases St = 0.2 and St = 0.3 only. In addition, some
measurements have been performed on the studied jet flow in CEPRA19 (large facility
at ONERA).

Figure 8 shows the streamwise evolution of the fluctuating pressure amplitude at the
radial location r/Dj = 1.5 for the LES and PSE computations, and for the experiments. The
Strouhal number is St = 0.3 and the two first azimuthal wavenumbers are considered. The
streamwise distance has been scaled by the potential core length, which is Lc = 3.3Dj in the
PSE and LES computations. In the experiments, the potential core length is slightly larger.
The LES levels have been rescaled to fit with the experimental data by subtracting 8 dB/Hz.
As the PSE calculation is based on linear equations, PSE results do not have an intrinsic
amplitude. The latter is therefore adjusted at one point to match the LES results amplitude.

We observe that the pressure fluctuations peak at about x/Lc = 1, i.e. at the end of the
potential core, and decrease further downstream. The LES and PSE computations, and
the measurements present the same trend in the growing region, but in the damping
region, the PSE results show a larger decrease than the LES ones. Unfortunately, no
measurements are available in this region.
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Figure 9 shows the same results, but for a Strouhal number St = 0.2, and exhibits the
same trends, with the peak of pressure fluctuations located here slightly downstream of
the potential core end. The agreement between the three kinds of results is here also very
good in the growing region. The location of the origin of the dominant pressure
fluctuations near the end of the potential core is consistent with previous studies
(Balakumar 1998, Malik & Chang 1997, Lin et al. 2004).

Other comparisons between PSE and LES are given in Figures 10 and 11. The
fluctuating pressure is here given in the streamwise direction for two radial locations
and for the axisymmetric and helical modes. Figure 10 shows the St = 0.2 results, Figure
11 the St = 0.3 ones. A unique constant has been used to adjust the PSE results ; this
means that the reduction observed for r/Dj = 1.5 with respect to r/Dj = 1 is identically
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Figure 8. Comparisons between LES (solid lines), experiments (squares) and PSE
results (solid lines with triangles) for St = 0.3, r/Dj = 1.5. Left figure
corresponds to the axisymmetric mode: m = 0, right hand side to the
helical one m = 1. The results from the LES are shifted by –8 dB/Hz to
match the experimental ones.

Figure 9. Comparisons between LES (solid lines), experiments (squares) and PSE
results (solid lines with triangles) for St = 0.2, r/Dj = 1.5. Left figure
corresponds to the axisymmetric mode : m = 0, right hand side to the
helical one m = 1. The results from the LES are shifted by –8 dB/Hz to
match the experimental ones.
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reproduced by the LES and the PSE approaches. We observe, as explained above, that
the PSE damping differs for the LES one at the radial location r/Dj = 1.5, whatever the
Strouhal number or the azimuthal wavenumber.

The acoustic field in the outer part of the jet has been calculated by solving the wave
equation, as explained in section 2.6. The lower boundary for the wave equation is
located at a radial distance r0 = 1.5Dj, since this is the lowest radial value beyond which
the mean flow becomes almost uniform whereas for larger values some numerical
uncertainties appear because of the very fast radial decay of the computed PSE pressure
fluctation. But the radiated sound prediction is not satisfactory although the LES, by
using a Ffowcs Williams & Hawkings method, predicts sound pressure levels which
agree relatively well with the measured ones, as shown in Figure 12. Indeed, in our case,
even if the jet is very hot, the instability waves (even amplified for small values of x)
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Figure 10. Comparisons between LES and PSE for St = 0.2 at two different radial
positions. Left figure corresponds to the axisymmetric mode : m = 0, right
hand side to the helical one m = 1.
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Figure 11. Comparisons between LES and PSE for St = 0.3 at two different radial
positions. Left figure corresponds to the axisymmetric mode: m = 0, right
hand side to the helical one m = 1.
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travel almost always subsonically with respect to the ambient sound speed, as shown in
Figure 13 for the axisymmetric mode. Similar computations have been performed for
higher azimuthal wavenumbers, and it has then been observed that the phase speeds
were always subsonic, whatever the streamwise location. Eqn (16) shows that an
instability wave has the potential of emitting sound, even if it travels subsonically. But it
has been checked numerically that it is not the case for the studied waves, which
explains why PSE do not here predict sound radiation.
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Figure 12. Overall far field sound pressure levels at 75Dj from the jet exit. The
measurements are plotted in red, the results from the Ffowcs Williams &
Hawkings method applied to the LES are plotted in blue

Figure 13. Streamwise evolution of the phase speed ω/αr for m = 0 and for several
Strouhal numbers

Aero 5-4_final  11/12/06  5:44 pm  Page 380



In a slightly different configuration (a jet flow with a Mach of 0.9 and an exit
temperature of 708 K instead of Mj = 0.7 and Tj = 830 K here), Bertolotti & Colonius
(2003) found that sound was not radiated by the shear modes but by what they called
core modes. It may be possible that it happens also for the present jet flow, and whereas
only the shear modes (Kelvin-Helmholtz modes) have been studied by the PSE analysis,
the LES calculation considers also the core modes, and then predicts more sound
radiation. But as shown by the previous figures, the fluctuating pressure obtained by the
LES around r/Dj = 1, r/Dj = 1.5, for St ≤ 0.3 and for m = 0 and m = 1, is nevertheless
very close to the Kelvin-Helmholtz evolution. As previously explained (see section 3.2),
the LES grid and the LES model were chosen to capture accurately the fluctuations
corresponding to St ≤ 0.3. However, as shown in Figure 7, fluctuations are still captured
more or less accurately up to St ≈ 1. Figure 12 provides the experimental and LES-
computed sound radiation; the latter is obtained from the full fluctuations computed by
the LES, without focusing on a specific (St,m) mode. Therefore this sound radiation
prediction contains the contribution of both large-scales Kelvin-Helmholtz instabilities
and small scales associated to the turbulence. As, according to the PSE analysis, the
Kelvin-Helmholtz instabilities do not seem to radiate sound, it may be deduced that in
this case the sound radiation is due to the smaller scales. Cheung & Lele (2004) have
compared DNS and PSE results for the study of subsonic and supersonic mixing layers,
and have also noticed that the majority of the acoustic radiation is not captured by PSE
in subsonic mixing layers.

Even if the PSE calculations are not able to correctly capture the acoustic radiation
in this case, they still give very interesting results in the near-field of the jet flow.
Moreover, they are much faster than the LES calculations: they require less than fifteen
minutes on a standard currently available computer to calculate the near-field for a fixed
Strouhal number and azimuthal wavenumber.

4 STUDY OF A HOT SUPERSONIC FLOW
4.1 Flow parameters
A hot supersonic jet flow is now considered. A round nozzle of diameter Dj = 0.09 m is
used. The jet flow exits with a velocity uj = 1106 m/s and a temperature Tj = 761 K. The
Mach number is then Mj = 2 and the ratio between the ambient and the core density is
ρ∞/ρj = 2.64. The pressure is, again, assumed to be uniform. The jet is divided into three
regions as core, transitional and fully developed regions. In each region, different
empirical functions (Tam & Burton 1984, Balakumar 1998) are used to represent the
dimensionless mean streamwise velocity profile :

Core region: 0 < x < xc

(32)
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Transition region: xc < x < xf

(33)

Fully developed region: x > xf

(34)

Here xc and xf are the locations of the end of the potential core and of the start of the
fully developed region, respectively. In our case, xc = 7.6 and xf = 12. h(x) is the radius
of the uniform core region, and is determined by the empirical formula :

(35)

where h0 = 0.46363. b(x) is the half-width of the annular mixing layer and is related to
h(x) in such a way that the total axial momentum flux of the jet is constant. The mean
density profile is obtained by a Crocco’s relation, which gives :

(36)

The mean radial velocity is computed from the continuity equation.

4.2 Linearized Euler Equations
The present section is concerned with solving the Linearized Euler Equations (LEE),
which are more general than the stability-waves equations. The LEE describe both the
sound generation and propagation, where the source of sound is represented by a
spatially-growing instability wave. This mechanism is the dominant noise source for
supersonic jet flows, and one of the first applications of LEE has been proposed by
Mankbadi et al. (1998).

The 3-D Euler equations are linearized about the steady mean flow (ρ–, u–x, u
–
r) defined

in the previous section to allow comparisons between both LEE simulations and PSE
solutions. The spatial derivatives are computed using the eleven-point stencil finite-
difference scheme of Bogey & Bailly (2004), the time integration is performed using an
optimized explicit six-step low-storage Runge-Kutta algorithm and radiation boundary
conditions are implemented. The forcing of the mean flow is obtained by introducing
vortical perturbations in the shear-layer (Bogey & Bailly 2005). The fluctuating velocity
is modified every time step as follows:
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where the shape of the forcing reads in cylindrical coordinates :

with ∆2 = (x – x0)
2 + (r – r0)

2. The forcing is located at (x0, r0), and the chosen numerical
parameters are ∆0 = 2δθ, x0 = 0, r0 = rj – 2δθ, where δθ is the momentum thickness at the
x0 location. The computations have been performed with ε = 10-3, and the results
presented in the following section have been normalized by ε. This procedure, as well as
the numerical algorithm, have been developed for the direct computation of aerodynamic
noise (Bogey & Bailly 2006). The computational domain is discretized by a 7.7 millions
points Cartesian grid, with 40 points in the initial diameter. The whole domain is about
–2D ≤ x ≤ 28D, –4D ≤ y ≤ 4D and –4D ≤ z ≤ 12D for the low frequency case St = 0.3.
The time of the simulation corresponds to 30 periods of the source, and the root mean
square fluctuating pressure is calculated over the last four periods. The time step is
imposed by the classical CFL condition, yielding CFL = ∆t c0/∆y = 1 in the present case.
Note that ∆t denotes the time step, c0 the speed of sound and ∆y the transverse step size.
The computations are performed on a Nec-Sx5 with a CPU time by time iteration and by
mesh point of 5.8 × 10–7 s. As for the PSE approach, each computation corresponds to
one value of the Strouhal number and one value of the azimuthal wavenumber.

4.3 Comparison between LEE and PSE results
PSE and LEE computations have been performed for a Strouhal number St = 0.3 and for
the two first azimuthal wavenumbers. The mean flow, which has been described in the
previous section, is analytical. On the contrary to the previous comparisons with LES
results, there is therefore no preliminary work to do on the computation grid. The
evolution of the disturbances inside the jet is computed using the PSE method, which is
initialized by a conventional stability result, as in the previous case of a subsonic jet. The
eigenfunction of the most amplified mode is computed with the conventional stability
approach. This mode has in this case a supersonic phase speed and is thus expected to
radiate sound. On the contrary to the previously studied subsonic jet case, the PSE
equations are not parabolic themselves for the considered supersonic hot jet. The
parabolicity criterion given in Eqn (9) is indeed not satisfied in the whole computational
domain. Nevertheless the computation of the solution seems still possible, provided that
the normalization and the marching step size are carefully chosen. The PSE results are
then used to compute the acoustic pressure field by solving the wave equation, as
explained in section 2.6. The lower boundary for the wave equation is located at a radial
distance r0 of 1.5 diameters of the jet, since the mean flow becomes almost uniform
beyond it. The LEE calculations provide directly the acoustic pressure field. As
previously explained, the mathematical form (5) for the PSE fluctuations is forced to be
close to the normal mode which assumes a weak dependence with respect to x compared
to the r-dependence. This difference is not compatible with a sound radiation evaluation.
On the opposite the LEE do not assume any scaling: LEE results are global in nature.
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To allow a valid comparison, the PSE pressure levels have been matched with the
LEE at one arbitrary point, defined by the radial location r/Dj = 4 and by the axial
location where the pressure reaches its streamwise maximum value. This has been done
once for each case of Strouhal number and azimuthal wavenumber since the two
predictions methods are linear.

Figures 14 and 15 show the spatial evolution of the acoustic pressure amplitude, for
the azimuthal wavenumbers m = 0 and m = 1, respectively. The left figure displays the
LEE computations, the right figure the results obtained by the PSE combined with a
wave equation. The plotted pressure levels are the same for both figures, i.e. for both
computations and for both wavenumbers. We observe that the noise is radiated in a
wedge shaped region. For many supersonic axisymmetric jets, it can be observed that
the helical mode radiates more sound than the axisymmetric one. This behaviour can not
be checked with either the PSE or LEE approach, as both are linear. However, as the
LEE computations have been excited in both cases m = 0 and m = 1 by the same level
of forcing ε = 10–3, figures 14 and 15 show nevertheless that the helical mode reacts
more powerfully than the axisymmetric mode. The agreement between the LEE and
PSE computations is very good whatever the azimuthal wavenumber: the shape of
pressure evolution is the same for both methods, which predict almost exactly the same
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Figure 14. LEE (left figure) and PSE (right figure) spatial evolution of the acoustic
pressure amplitude for St = 0.3 and m = 0

Figure 15. LEE (left figure) and PSE (right figure) spatial evolution of the acoustic
pressure amplitude for St = 0.3 and m = 1
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sound radiation angle. Although the PSE pressure levels have been matched with the
LEE ones at only one point, we can see that the spatial variation is totally similar for
both methods. Moreover, the figures depict that most of the noise is radiated in the
region located between the end of the potential core and the beginning of the fully
developed region (xc = 7.6 < x < xf = 12).

To investigate more precisely the agreement between the results of the two methods,
Figures 16 and 17 show the evolution of the pressure amplitude with the axial distance
for three various radial locations and still for both azimuthal wavenumbers m = 0 and m
= 1. A good agreement between the LEE and PSE results is found, but the PSE method
slightly under-predicts the streamwise location of the pressure peak. Moreover the
pressure damping is slightly faster in the PSE computations than in the LEE ones.
However the decrease in the maximum amplitude value with the radius location is
predicted in a similar way by both methods. The agreement between the LEE and PSE
predictions of the radial evolution of the pressure amplitude is also good, as shown in
the figures 18 and 19. The PSE approach combined with a wave equation can not
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Figure 16. LEE (lines without symbols) and PSE (lines with full circles) streamwise
evolution of the acoustic pressure amplitude for St = 0.3 and m = 0

Figure 17. LEE (lines without symbols) and PSE (lines with full circles) streamwise
evolution of the acoustic pressure amplitude for St = 0.3 and m = 1
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compute the pressure inside the jet. Thus on Figures 18 and 19 the wave equation
pressure profiles have been composited with the direct PSE pressure solutions for radial
locations r < r0, which enables to get a continuous graph.

386 Investigation of the PSE approach for subsonic and supersonic hot jets. 
Detailed comparisons with LES and Linearized Euler Equations results

Figure 18. LEE (lines without symbols) and PSE (lines with full circles) radial
evolution of the acoustic pressure amplitude for St = 0.3 and m = 0

Figure 19. LEE (lines without symbols) and PSE (lines with full circles) radial
evolution of the acoustic pressure amplitude for St = 0.3 and m = 1
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To get comparisons inside the jet, PSE results are used directly, without solving the
wave equation. Figures 20 and 21 show the evolution of the pressure amplitude with the
streamwise distance for the radial locations r/Dj = 0.5, 0.75, 1 and 1.5. We observe the
same trends as previously; however the pressure peak location is here predicted by the
PSE computations significantly upstream from the one predicted by the LEE
computations.

LEE and PSE computations have also been performed for the Strouhal number St =
0.6. The spatial evolution of the pressure amplitude is shown in Figure 22. The
comparison is less good than for St = 0.3 because of numerical difficulties in the PSE
computations, which create in particular an artificial hump at x/Dj ~ 14. But the shape
is still similar to the one found by LEE computations. The maximum of sound radiation
comes from a region upstream of the one found for St = 0.3, which may be explained
by the fact that the maximum of instability waves amplitude occurs upstream at St = 0.6.
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Figure 20. LEE (lines without symbols) and PSE (lines with full circles) streamwise
evolution of the pressure amplitude inside the jet for St = 0.3 and m = 0

Figure 21. LEE (lines without symbols) and PSE (lines with full circles) streamwise
evolution of the pressure amplitude inside the jet for St = 0.3 and m = 1
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4.4 Comparison with conventional stability results
A conventional stability approach has been applied to the studied hot supersonic jet for
the helical mode at the Strouhal number St = 0.3. The variation of the computed pressure
amplitude with the streamwise location is plotted on Figure 23, and is compared to the
PSE and LEE results at the radial location r/Dj = 1.

The conventional stability results differ significantly from the two others ones : the
amplification is much weaker and the damping is slower. Moreover, the spatial evolution
of the pressure amplitude, computed from the Tam & Burton (1984) approach and shown
in Fig 24, is also very different, especially the radiation angle. To explain these differences,
note that the conventional stability approach follows the evolution of the Kelvin-
Helmholtz mode only whereas the so-called supersonic and subsonic modes also coexist
(Tam & Hu 1989) as the flow is supersonic. It may not be the case for the PSE
computations : because of the non-linearity of the used normalization, the solution may
be a mixing of different modes, and thus follow basically the most amplified combination.
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Figure 22. LEE (left figure) and PSE (right figure) spatial evolution of the pressure
amplitude for St = 0.6 and m = 1

Figure 23. Streamwise evolution of the pressure amplitude for St = 0.3 and m = 1; in
red conventional stability results, in green PSE computations, in blue LEE
computations
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5 CONCLUSIONS
In this work, a Parabolized Stability Equations code based on Euler equations has been
developed to study the stability of axisymmetric jets. It has been shown than the Euler-
based PSE equations are parabolic rather than parabolized as long as a specific
parabolicity criterion is satisfied. However, as in other PSE studies, it is still necessary
to use a sufficiently large marching step size to avoid numerical instabilities.

Calculations have been performed for two different jets: a hot subsonic Mj = 0.7 jet
and a hot supersonic Mj = 2 jet. A LES simulation has been applied to the subsonic jet,
and some measurements have been made. The mean flow computed by the LES has
been used as the base flow of the PSE approach. When compared to the LES simulation
and the experiments, PSE method predicts very well the spatial growth of the
disturbances. The maximum of pressure disturbance amplitude is reached near the end
of the jet potential core. But the spatial damping is overpredicted in the PSE results with
respect to the LES simulation. We have also shown that for this particular hot subsonic
jet, the jet shear-layer instabilities travel almost always subsonically, and thus do not
contribute significantly to the sound radiation process. The noise radiation predicted by
the LES simulation may then not be due to the Kelvin-Helmholtz instability waves. Even
if the PSE cannot capture in this case the noise radiation, this study demonstrates how
successful is the PSE method in the prediction of spatial development of large-scale
instabilities in an axisymmetric subsonic jet.

PSE method has been also applied to a hot supersonic jet, and has been compared to
LEE computations. There is once again a very good agreement between both
predictions of the spatial evolution of the instabilities. However an accurate comparison
between both results show that PSE and LEE computations slightly di_er in the
prediction of the streamwise location of the disturbance pressure maximum. For the
studied jet the large-scale instabilities travel supersonically, and thus radiate sound. To
compute the acoustic pressure from the PSE results, the wave equation has been solved.
The directivity of the radiated sound is captured as well by PSE as by LEE
computations. The noise sources seem to be concentrated near the jet potential core end,
and the helical mode dominates the acoustic radiation.
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Figure 24. Spatial evolution of the pressure amplitude for St = 0.3 and m = 1; result
from the conventional stability approach
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This study shows that the PSE stability approach is very efficient to predict the
spatial development of jet large-scale instabilities, in both subsonic and supersonic case.
Moreover we get accurate pressure eigenfunctions not only in the unstable flow region
but also in the stable flow region. PSE computations have also the major advantage to
require a low computational cost compared to other techniques as LES or LEE codes.
Moreover, even if numerical instabilities may sometimes appear, PSE numerical
implementation is relatively easy. It would be very interesting to develop a non-linear
PSE code to improve the accuracy of instabilities and noise predictions.
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APPENDIX: PSE EQUATION
The parabolized stability equation is :

(37)

where

(38)

(39)

(40)

The vector φ̂ is the shape functions vector and is given by :

(41)
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