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The theoretical linear stability of a shock wave moving in an unlimited homogeneous
environment has been widely studied during the last fifty years. Important results have
been obtained by Dyakov (1954), Landau & Lifchitz (1959) then by Swan & Fowles
(1975) which write the fluctuating quantities as normal modes. More recently, numerical
studies on upwind finite difference schemes have shown some instabilities in the case of
the motion of an inviscid perfect gas in a rectangular channel. First, the purpose of this
paper is to specify a mathematical formulation for the eigenmodes and to exhibit a new
mode which was not pointed out by the previous stability analysis of shock waves. Then,
this mode is confirmed by numerical simulations which may lead consequently to a new
understanding of the so-called carbuncle phenomenon.

1. Introduction

The stability of a shock wave is of considerable interest from both a fundamental
and a practical point of view. L. Landau performed the first attempts to determine the
stability of shock waves. Small disturbances were introduced on both sides of a steady,
non-dissipative, plane shock wave. Landau & Lifchitz (1959) and Xu (1987) obtained
the stability criterion My > 1, My < 1 for small disturbances which are travelling
in the direction perpendicular to the shock wave (one-dimensional perturbations case).
This stability criterion is simply a consequence of the requirement of the second law
of thermodynamics. A fundamental paper dealing with the stability of a shock wave
containing two dimensional small disturbances in an infinite homogeneous environment,
with an arbitrary equation of state is that of Dyakov (1954). He found that the shock is
unstable when
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where j2 = (P; — Py)/(Vo — V1) is the slope of the Rayleigh line, (dV/dP)g the slope
of the Hugoniot curve in the pressure-volume (P — V) plane, M the downstream Mach
number and V = 1/p the mean specific volume. Swan & Fowles (1975) completed the
calculations of Dyakov by giving a physical interpretation of these instabilities. In their
analysis, the marginal case Im(k;) = 0 (no spatial amplification), Im(w) = 0 (no temporal
amplification) was also considered. This case corresponds to pure acoustic, entropic and
vorticity waves which are neither amplified nor damped, it corresponds in fact to a
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spontaneous emission of sound by a discontinuity. This emission was already studied by
Dyakov (1957), Kontorovitch (1957) and Fowles & Houwing (1984). A new possible zone
of instability has been obtained:
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However for a perfect gas, it can be easily shown that:
72(AV/dP)g = —1/Mj.

Thus, for such a gas, the instability criteria (1.1) and (1.2) can never be satisfied; con-
sequently according to these criteria, in a perfect gas, a shock wave is unconditionally
stable.

More recently, the linear stability of a shock wave has been used in the framework of
self-sustained oscillations of shock waves in a transonic nozzle flow. Many experiments
carried out by Sajben et al. (1981) have highlighted some critical configurations for which
the shock in the nozzle exhibits well-defined oscillations. The previous stability analyses
have been generalized for this non analytical case and interesting results have been ob-
tained in comparison with the experimental ones, see Casalis & Robinet (1997). In this
case also (with a perfect gas), the stability analysis leads to the conclusion that the mean
flow is stable; the mean shock along with the downstream core region actually plays the
role of a noise selecting system.

From the previous studies, it could be inferred that the shock wave is intrinsically
stable. This is not true. First the analysis performed by Dyakov, Swan & Fowles presents
some deficiencies: one of the two acoustic waves is discarded but the reason why is not
clear, the existence of disturbances in the upstream region is not clearly stated. Moreover
all previous analysis did not take into account a strange mode. The shock wave stability
must be inspected again.

In a seemingly different scientific area, the so-called carbuncle phenomenon has been
observed and discussed in the CFD community for many years and so far has been
considered as a purely numerical instability by numerical scheme designers. One of the
main findings of this paper is that the carbuncle phenomenon may be the numerical
symptom of a more fundamental instability mechanism associated with a shock wave in
inviscid flow. The carbuncle phenomenon was first observed by Peery (1988) for blunt
body computations using Roe’s method (Roe (1981)). It consists of a spurious steady
state solution obtained when computing a blunt body flow problem at supersonic speeds.
The unphysical solution, although converged in time, includes a non symmetrical recir-
culation region which takes place ahead of the bow shock in the vicinity of the stagnation
line. On Fig. 1, a side-by-side comparison between a physically acceptable solution and
a spurious solution including the carbuncle phenomenon is presented to illustrate the
importance of the flaw. The freestream Mach number is M., = 10 and the geometry
is a two-dimensional cylinder whose axis is perpendicular to the incoming flow. Both
numerical solutions are obtained by solving the Euler equations in time, starting from an
initially uniform flow which corresponds to the freestream conditions. It is remarkable
that both numerical solutions shown on Figure 1 are steady state solutions, i.e. converged
in time, obtained using exactly the same geometry, the same grid and the same initial
and boundary conditions. The only difference between the two calculations lies in the nu-
merical method used to reach the final solution. This is the reason why aerodynamicists
have long attributed the carbuncle phenomenon to a purely numerical mechanism with
no connection to the physics. For stable and consistent conservative methods, one might
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FI1GURE 1. Forward facing cylinder, M+, = 10, temperature contours, 80 x 160 computations
(from left to right: 10 x 20 mesh, HLLE method, Roe’s scheme)

expect the numerical procedure to converge toward a unique physical solution according
to Lax-Wendroff’s theorem. However, one should remember that this convergence the-
orem applies to a convergence in time and space and is not in contradiction with the
occurrence of the carbuncle phenomenon obtained on a grid of finite resolution. By using
a grid series with a increasing spatial resolution, one should eventually obtain an unsta-
ble solution. The carbuncle phenomenon was first closely studied from a numerical point
of view by Quirk (1994) who introduced a simplified test case, dubbed ‘Quirk’s test’,
in which a planar moving shock wave is computed as it is propagating down a duct. In
Quirk’s test case, the symmetry line is slightly perturbed from a uniform grid to initiate
the instability. Ever since, many authors, using other upwind schemes, have reported the
strong connection between the carbuncle phenomenon and Quirk’s test : all numerical
schemes which fail Quirk’s test also fail the blunt body problem and vice versa. The main
interest of Quirk’s test is that it is not as strongly grid-dependent as in the case of the
carbuncle phenomenon and that it is easier to study mathematically. In the following,
only Quirk’s test will be considered but the strong connection between both problems
should be kept in mind when considering the relevance of the present study for practi-
cal gas dynamics applications. Amongst the different researchers who have studied the
carbuncle phenomenon, many have noticed that the instability is more likely to appear
when the bow shock is almost perfectly aligned to grid lines (Quirk (1994)) and when
grid cells are very elongated along a direction normal to the shock (Pandolfi (1998)).
Consequently, some schemes may produce flawless solutions on one set of grids but can
fail on a different grid. In the carbuncle phenomenon, the shock instability is caused by
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the shock strength itself and all problems vanish when a shock-fitting technique is used as
opposed to a shock-capturing technique (Pandolfi (1998)). Some schemes have a reputa-
tion of never producing the carbuncle phenomenon. These are the upwind schemes which
do not exactly solve the contact waves, such as all the Flux Vector Splitting methods
(van Leer (1982), Pullin (1980), Steger (1981)) or some upwind schemes based on the
integral approach such as the HLLE method (Harten et al. (1983)). These schemes are
suitable for Euler problems but are much less attractive for Navier-Stokes applications
since they dramatically broaden boundary layers by adding an overwhelming amount
of artificial dissipation. Among the upwind schemes which exactly resolve grid-aligned
contact waves, the vast majority, including an exact Riemann solver such as Godunov’s
method (Godunov (1959)), produce the shock instability. Furthermore, when a very small
amount of extra numerical dissipation is added to contact waves, all instability problems
disappear but that seriously compromise the accuracy of the solution. Hence, there exists
a trade-off between an exact solver for contact waves, which would allow the confident
computation of boundary layers and the addition of a limited amount of dissipation to
contact waves where intense shocks waves are present. This trade-off is the basis of some
solutions which have been proposed to date, to remove the carbuncle phenomenon from
computed solutions. Some cures (Quirk (1994), Wada & Liou (1997)) consist of flag-
ging the cell-interfaces, which are located in the vicinity of the shock wave, according
to an arbitrary test based for instance on the pressure ratio across the cell-interface. A
dissipative scheme is used to compute fluxes through flagged cell-interfaces while a non
dissipative method is used elsewhere. In this family of solutions, all methods differ in the
flagging procedure, some involving a tunable parameter, some taking into account the
intrinsic multidimensional mechanism associated with the shock instability. Other ad hoc
solutions are specified for a given family of schemes such as Roe’s method (see Sanders
et al. (1998) and Pandolfi (1998)), of the HLL family (see Flandrin et al.(1994)) and can
be described as built-in limiters which selectively add some extra numerical dissipation
to damp out spurious oscillations near shocks. Liou’s analysis includes an interesting con-
jecture discussed in Xu (1998) which states that a necessary condition for a numerical
flux to develop the carbuncle phenomenon is to have a mass flux which depends on the
pressure. Liou makes the observation that not only do all tested numerical fluxes which
produce the carbuncle phenomenon present a pressure dependency in the mass compo-
nent, but that all tested numerical fluxes which do not show the carbuncle phenomenon
have mass components which are independent of the pressure. Yet, Liou’s conjecture,
if true, would imply that one can design a numerical flux function which would not
produce the carbuncle phenomenon and still maintains the exact resolution of contact
waves. However, this conclusion would be in contradiction with Gressier’s theorem which
states that strict stability for Quirk’s problem and exact resolution of contact waves are
incompatible (Gressier & Moschetta (1998b)). This theorem only applies to first order
schemes which only depend on two neighbouring states.

This brief review of the carbuncle phenomenon and its various possible solutions has
emphasized the practical importance of this bizarre instability. It has shown that the car-
buncle phenomenon has been long regarded as a purely numerical pathology for which
the CFD community would have to face a dilemma between the use of upwind schemes
which exactly solve contact waves but are prone to develop the carbuncle phenomenon
and the use, either local or global, of stable methods which add too much numerical
dissipation to the solution to be applied in shear flow regions. Indeed, there is no doubt
that there is a strong influence of the whole numerical procedure (grid stretching, nu-
merical flux functions, higher-order upgrading methods, etc.) on the development of the
carbuncle phenomenon. However, this study will demonstrate that the numerical aspects
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are not the only indication of this phenomenon and that a more fundamental stability
mechanism is at stake. Furthermore, this paper aims at highlighting new viewpoint in
the CFD community with regards to upwind schemes for the compressible Navier-Stokes
equations. It has been common practice for many years to focus on the capability of up-
wind schemes to exactly solve contact waves and all existing solutions for the carbuncle
phenomenon are based on the modification of the linear path in the Riemann problem.
This study will suggest that the shock-capturing capability of upwind schemes must be
revisited to include the multidimensional interaction between contact waves and shock
waves.

Summarize, the general objectives of this paper are firstly to demonstrate the existence
of a new instability mode, and secondly to show that the carbuncle phenomenon seems
to have a strong link with this intrinsic instability mode.

The present paper is divided into six parts. Following this introduction, the second part
is devoted to the theoretical analysis. The linear stability theory of a shock wave is fully
analyzed, leading to the existence of a new unstable mode (the “strange mode”). A brief
description of the Quirks original problem is given in part 3. The proposed methodology
is divided in two steps. First, the observed numerical instabilities are shown to follow
a linear instability threshold for a given shock wave Mach number. To the best of our
knowledge, this result is not known or not established in the CFD community. These
points constitute the fourth part of the report. The second step demonstrates that when
a numerical instability occurs it is in agreement with the “strange mode” highlighted in
part 2. Therefore the key point is to check the theoretical dispersion relation and the
shape of the theoretical eigenfunction. This is achieved in part 5. A summary constitutes
the last part of the report.

2. The linear stability of plane shockwaves
2.1. Presentation of the problem and assumptions

The practical configuration corresponds to a planar shock wave propagating at a constant
speed W, in a tube, where the mean flow upstream of the shock is at rest. However, in
order to simplify the theoretical approach, the cartesian coordinates system Ozyz is fixed
on the shock: the z-coordinate coincides with the axis of channel, and the undisturbed
shock front is located at = 0. Both upstream and downstream flows are assumed to be
constant and one-dimensional. By convention, the flow moves from x < 0 region to x > 0
region. The flow is considered as a perfect inviscid gas and the downstream quantities
are denoted by subscript 1 and the upstream ones by subscript 0. The geometry and
notations are shown in figure 2.

2.2. Governing equations and boundary conditions
The general equations of motion for the instantaneous flow are the Euler equations, the
energy equation, written for the total, enthalpy and the equation of state for a perfect
gas.

op B
5 TUV)p=0, (2.1a)
p%—lt] +p(UVU = —VP, (2.1b)
oh, _op
P +p(U.V)h; = s (2.1¢)

P =rpT, (2.1d)
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FIGURE 2. The geometry of the considered flow field.
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where U = (U, V)! represents both velocity components of the flow. In the considered
channel, three types of boundary conditions must be imposed. The first one corresponds
to the slip condition on the walls of the channel:

Vl]y—sn = 0. (2.2)

For each part of the flow, the second boundary condition is impoesd at the shock which
is considered as a discontinuity. The instantaneous shock jump relations are the Rankine-
Hugoniot relations. The last boundary condition expresses that there is no fluctuation
far from the shock. For all quantities ¢, the following condition is imposed:

0 .
vyt 5 <xggloo(1(w,y,t)> =0. (2.3)

2.3. Mathematical form of the perturbation

The present stability theory is based on the classical small perturbations technique where
the instantaneous flow is the superposition of the mean flow, data of this problem, and un-
known fluctuations. All the physical quantities ¢ (velocity, pressure,- - -) are decomposed
into a mean value and a fluctuating one:

q(z,y,t) = G+ qp(x,y,t). (2.4)

The mean value is assumed to be a constant. In fact, this implies that two decompositions
are written: one upstream of the shock, the other one downstream. According to the
homogeneous form of the boundary conditions as well as the constant form of the mean
flow, the perturbation can be described as a normal mode with respect to the different
variables x, v, t:

q(z,y,t) = G+ ge'F=thvet e, (2:5)
where ¢ is the amplitude of the fluctuations, k = (k,, k,)! is a wave number vector with
k, € C and k, € R, c.c. denoting the complex conjugate. The circular frequency w is
a complex number, its real part w, represents the frequency of the perturbation and its
imaginary part w; a temporal growth rate. The physical meaning of w; is in accordance
with the classical definition of stability: for w; > 0, the mean flow is unstable whereas
for w; < 0 the mean flow is stable. Usually, for a stability analysis, either a temporal
or a spatial theory is used, depending on the physical nature of the phenomenon. The
spatial theory is prefered when the phenomenon takes its origin at a specific place, that
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corresponds to a complex wave number k, and a real circular frequency w (Laplace
transform with respect to x and Fourier transform with respect to t). The temporal
theory is prefered when a temporal origin is defined. In this case, the wave number k, is
real and the pulsation w complex. In our configuration, a space origin in z (the shock)
and a temporal origin (¢ = 0 corresponds to the starting position of the shock on the
wind tunnel in the computation which will be described in part 3) may be introduced.
This leads us to consider an space origin in z, in ¢ and thus to make a Laplace transform
in z and in ¢. In the present case, both k, and w are therefore complex numbers.

2.4. Linearized Euler equations

The decomposition (2.5) is introduced into equations (2.1a) to (2.1e). The resulting
equations are then simplified, firstly by taking into account that the mean quantities
satisfy the equations and secondly by assuming that the fluctuating quantities are small,
so that these equations can be linearized with respect to the disturbance. Finally, the
linearized Euler equations become a homogeneous algebraic system:

(M, — k,M,)Z =0, (2.6)

where k, is the eigenvalue of this problem, Z stands for (T, P, U, 0) and M and Mg are
(4 x 4) matrices which depend on the mean flow and the coefficients w and k.

A non zero solution in (2.6) exists if det(M; — k,Maz) = 0. This condition provides four
different wave numbers:

y _ —wU —aQ o —wU +af 3) (4 W
kg(g)_ C_L2—U2 ) ka(c)_ 62—02 ) ka(c)_ka(c)_ﬁ7 (27)
where: Q = (w? — ka(a* — (72))% ,a4 = (fer)é
The corresponding eigenvectors are:
_ _ ¢
O ) g0 —w) ) —[1,-2.0,0]
V172_ - Cp T a2 7km :ky 7V3_ |:17_T7070j| )
®7°
V,=0,0,1, —kL ) (2.8)
y

These eigenvectors can build a base if the determinant of the matrix M ,, whose columns
are the four eigenvectors V1, Vo, V3, V4, is different from zero:

detM, £ 0 & w # +ik,U and w # +k, (a2 - U2) ’, (2.9)

Physically, if one has w = +ik,U, then the second acoustic mode has the same phase

1
speed (wave number) as the vorticity mode. On the other hand, w = %k, (62 T’
implies that the both acoustic modes coincide. However this case is eliminated by the
boundary conditions. If the condition (2.9) is verified, the general solution of (2.6) can
be written:

4
qr = chvjeik;])m eilkyy—wt), (2.10)
j=1

The four coefficients C;, j = 1,---,4, are unknown integration constants which are
respectively related to both acoustic waves (j = 1,2), the entropy wave (j = 3) and the
vorticity wave (j = 4).
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2.5. Introduction of the boundary conditions
2.5.1. Wall conditions
For the fluctuating quantities, the boundary conditions (2.2) become:

'Uf|y:j:h =0. (2.11)

These relations impose that the wave number k, must have discrete values only if:
k, = 5F for n € Z.

2.5.2. Conditions at infinity
For the fluctuating quantities, boundary condition (2.3) becomes:

xkrjrcloo qr(z,y,t) =0, Vy,t. (2.12)

The amplitudes of the disturbed physical quantities should vanish at infinity. That leads
to study the intrinsic stability of the shock itself and not an external excitation. According
to condition (2.12), the following inequalities must be satisfied:

Im (kg’)) >0 (resp.<0) for >0 (resp.z<0) for i=1,2,3, (2.13)

where Im(z) is the imaginary part of z. In the present analysis, when the shock wave is
temporally unstable (Im(w) > 0), the equations (2.4) lead to:

Im (kg)) <0, Im (kff)) >0, Im (kg(f)) >0 for z>0

Im (ké”) >0, Im (kéz)) >0, Im (kg(gs)) S0 for z<0 (2.14)

Thus, the constants Cy, Cs, C3, C4 of the upstream flow must be equal to zero. Therefore
no unstable fluctuation may exist in the upstream region. On the other hand, downstream
of the shock, only the constant C; which corresponds to an acoustic wave must be equal
to zero. Finally, the fluctuating quantities are written as:

( 772.(2)
Uky’ —w = ()
T, = —Co————¢ Cze™="" | E
f ( 2 %,y e + C3se
o = (-0 pUKY —w) BLSENNNGRRSLAN
’ kya? T (2.15)
k(2) ) )
up = kLC2elk9)m +O4€lk§”3)m E
y
| v = (026““5”2)“ 1@%046““5”3)m> E,

with E = el(kvy=wt),

This analysis clearly shows the reason why Dyakov (1954) removed one of the acoustic
waves in his analysis. It also explains and justifies why Dyakov (1954) and Swan & Fowles
(1975) did not consider any fluctuation upstream of the shock.

2.5.3. Linearized Rankine-Hugoniot relations

The same small perturbation technique (2.5) is used for the shock equations. The
perturbed position of the shock is written as:

x = f(y,t) = T + Xe!Fv=ot) e (2.16)
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where Z. is the mean shock position (here Z. = 0 due to the choice of the coordinate
system) and X represents the shock oscillation amplitude. The latter is assumed to be
a small (complex) quantity. The expressions of the normal vector n and the tangential
vector T can be deduced from equation (2.16). At first order:

{ n = (1,-0f/dy)" = (1, —ik,XE)*

T=(0f/0y,1)t = (ik, X E, 1)
The Rankine-Hugoniot relations are then linearized by performing a first order Taylor
expansion with respect to the fluctuating quantities. For example, ¢; is the value of the
quantity ¢, which is itself the sum of the mean and the fluctuating quantity. Both are
evaluated just downstream of the perturbed shock position. ¢; is expressed as:

(2.17)

QI(ic + Xanat) = (jl(i‘c + XE) + QIf(i‘c + Xanat) (218)
As the coordinate system is such that T. = 0, ¢; and ¢ are expanded into :

where ¢ is the amplitude of the fluctuation at the mean shock position. After some
calculation, the linearized shock relations lead to an algebraic system of equations:

A1Z1(0) =€X + Ao Zo(0), (2.20)

where Z;(0) (for ¢« = 0,1) is the fluctuating amplitudes vector calculated at the mean
shock position. £ is a complex vector and Ay, A; are fourth-order complex matrices.
As explained above, the stability analysis of the Euler equations showed that no intrin-
sic fluctuation can exist upstream of the shock (Zy = 0). Thus, for a one-dimensional
constant flow on both sides of the shock, the general linearized equations of Rankine-
Hugoniot (2.20) can be simplified into:

Uips + pruy ) = iw(po — p1)XE

(rTy + UR)ps +rp1 Ty +2p1Uruy = 0 (2.21)
Cpr+01Uf = iW(UO—Ul)XE ’

vf = Zky(U() - Ul)XE

2.6. FEigenvalue Problem

Substituting the expressions of T, ps,uyr, vy (2.15) at 2 = 0 into the shock relations

(2.21) leads to an algebraic system:
Gx =0,

(2.22)

where x = (Cs, C3, Cy, X )t is the unknown vector and G is a fourth-order matrix, which

depends on w, k, and the mean flow values:

_—2 (2) _ . -
- (- + 220 S n
o P (2U1k(2) - (1+H§) (Ulk;2> —w)) plTUl 25, U1 0
= y 1

w - .

E Cy U —jw [U]
w

1 0o Y ik U
kU LRy [_]

U,

(2.23)

A non zero solution can exist if the rank of this system of four relations is less than four.
Hence, that the determinant must be zero: detG = 0. This condition yields a dispersion
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relation.
After tedious calculations, this dispersion relation has been analytically obtained:

77 2 2 . M1
2Dy (k22 - <_w_ + kj) (w-T®) [ =25= | =0. (2.24)
Uo U, U1Ug M,
One can immediately note that this relation is identical to the one obtained by Dyakov
and by Fowles, in the case of a perfect gas.

2.7. Explicit resolution of the dispersion equation

Let us seek to solve (2.24) in more detail. Substituting kg(f) into the dispersion relation
(2.24) leads to an algebraic equation in w. Then, defining ©® = w/(@ k,), the dispersion
relation (2.24) becomes:

A (1-717) e (02 +717) - <Z®2+Wf> <®—M1 (02 + 77 —1)%> ¢ =0,

UO UO
(2.25)
M, —
with ¢ = 0_2 . After some calculations, the dispersion relation (2.25) becomes:
0
(@2 +M§) (f10* + 20 + f3) = 0 (2.26)
with
_ U_12 2 i
h=5 (62— 49 +4(1-71}))
71 2 71 =2 )
fo=2gt (¢ 20428 (1-711)
5 \2
f: = (M) .

The dispersion relation (2.26) has a solution given by © = 4iM;, where only the
positive root is the solution of the dispersion relation (2.25). It corresponds to:

wr, =0 and w;= kyUl. (2.27)

This mode corresponds to a value of w which has been excluded (2.9), a special analysis
is necessary, see section 2.8. The other roots of (2.26) lead to real values of w.

However, although these roots are mathematical solutions of (2.25), they are not physi-
cally acceptable. Indeed, the conditions (2.14) are not satisfied. This result is in agreement
with those of Kontorovitch (1957). He showed that the existence of the marginal mode,
corresponding to real and undamped sound waves and entropic waves moving away from
a discontinuity, i.e. to the spontaneous emission of sound by the shock wave, is possible
for real gas only.

2.8. The unstable mode

The dispersion equation (2.24) has been obtained for all complex values of w, with some
exceptions (2.9), for which the form of the disturbance (2.10) is no longer valid. Sur-
prisingly, this is the case for the considered mode (2.27). To sum up, a stability analysis
has been performed assuming that the 4 eigenvectors in (2.8) are linearly independent (4
values of w are thereby eliminated). A unique mode has been obtained, but it corresponds
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to one of the 4 excluded values. The previous analysis must be therefore performed again
from the beginning (paragraph 2.4) by writing the disturbance in an adapted base. In
principle, this must be done for each of the four eliminated values. corresponds to one
of the four excluded values. The previous analysis must be therefore performed again
from the beginning (paragraph 2.4) by writing the disturbance in an adapted base. In
principle, this must be done for each of the four eliminated values. In fact only w = iUk,
leads to a non zero solution compatible with the boundary conditions.

For w = ik,U1, the eigenvalues of (2.6) are given by:

1437,
1- 31

kY = —ik, and k2 =k =k =ik, with k, €N (2.28)

We will now focus on this mode alone. The eigenspace Ekm = Ker (M1 — kg(gl)Mg)

associated with the eigenvalue kg(gl) is of dimension 1 and is generated by:

_ _ ¢
v (1B @+0, . @-T,
1 — ) = — — — — .
(y=DTy" 2(yv—1)U Ty 2(y—1)UT:

3
The eigenspace E, ) = Ker (M1 — kg(f)Mg) associated with the eigenvalue kg(f) is of

dimension 2 only, and is hence generated by two vectors Vg, V5. Thus there is no base
in which the matrix M2_1M1 is diagonal. The last vector V4 is sought such that the
matrix M5 ' M) is in the Jordan form i.e.:

(M1 - k§f>M2) Vi= MV,
Finally:

iU 1 1+i>t

— t
\ 74 1 - Nt
2 ( ) T17 ) > s V'3 ( sy Uy Ly ’L) » V4 <rky7 ’ky’ ky

In this base, the matrix M2_1M1 is given by:

-—2
St TR
1- M,
J = 0 ik, 0 0 |- (2.29)
0 0 ik, 1
0 0 0 ik,

The primitive fluctuating quantities, (T, §, @, ) can be found by:
Z = P,

where P is the base transformation matrix, the columns of which are the eigenvectors
of matrix M;lMl and C is the vector (C,C5,C3,C4)! formed with the integration
constants. Ultimately, the general solution of (2.6) for the mode w = ik, U; is:

(]f = [C’l Vleikgl)l' + égVQ@ikS)x + (C’g + ’LiL’é4) Vgeikgg)x + 04‘746“{:&3)%] ei(kyy—wt)_
. (2.30)
For the same reasons as before, C'i is equal to zero. Expression (2.30) where z = 0 is
then introduced into the linearized relations of Rankine-Hugoniot (2.21). The following
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algebraic system is obtained:

Gx =0, (2.31)
where x = (ég, Cs,C0, X X)t is the unknown vector and G is a fourth-order matrix, which
depends on k, and on the mean flow values. The mode w = ik U1 only exists if the
determinant of G is equal to zero. It can be easily shown that the determinant of G is

only a function of the upstream Mach number M and ~:
detG o (712 — 39) Mg + (72 + 67 — 3)Mo + v + 5. (2.32)

A first consequence of this result is that the wave number k, does not act upon the
condition of instability. The roots of this biquadratric equation are:

—(1) ., 1 ==(2) 1 =—=(3) S+ 3 —(4) S+ 3
My =i(y)"2, My =—i(y)"2, M, :<3—> , My :_<E> . (2.33)

The only acceptable solution is:

1
— 5+7)\?
My, =|-—) . 2.34
.= (352 (2:34)

This instability is very surprising because it exists only for one value of the upstream
Mach number; for example: My, = 2 for v = 1.4. Using the critical upstream Mach
number M,_ as a function of v, one can calculate the associated critical downstream
Mach number M, with the Rankine & Hugoniot relations:

s 24 (y-DM, 1
Mlz p—;Y Zg
2vM,, - (v—1)

which shows a surprising independence an 7.

To determine the shape of the eigenfunctions, the coeflicients C; are calculated according
to the amplitude of the shock displacement X. The resolution of the system Gx = 0
gives:

. _ Ui [U] 2(2y - 1)
Gy = A—.'
Co (y—1) ((27 )+ 3)
. 2(i + 1)
C ky X,
? ((27 1)+ 3) (2.35)
o 2k (U]

—
((27 )3T + 3)
The general solution (2.30) becomes:

—ky (a:—ﬁ1 t) eikyy
)

by = Kp€ B
up = k(14 k) e Db, (2.36)
vy = Hvk,ywe—ky(x—Uﬁ)eikyy’
, - , 2 [0 k, X
with: K, = —ki1p1U1, ky = —K1, Ky = ik1 and Ky =

—2 o
2y-1)M;+3
It is remarkable that the transverse fluctuation speed (and only this quantity) is contin-
uous through the shock. To calculate these eigenfunctions, non dimensional quantities
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Fluctuating quantities (Arbitrary scale)

have been defined:

T aopt vy 7
==, t'=— and vi=—, ui}=—, pi=
h 7 G r= g, P

by
Pot;

Figure 3 shows the evolution of the amplitude of u}, v} and p} for n =1 (ky, = nn/h)
and the same X.

This stability analysis of a shock wave has highlighted an unknown unstable mode,
which exists for one and only one value of the upstream Mach number, and furthermore
to characterize the above eigenfunctions. The existence of this intrinsic instability in the
continuous Euler equations has significant consequences for the numerical resolution of
these equations. The following sections aim to show that the intrinsic instability of the
continuous equations allows for a different explanation of these phenomena, up until now
regarded as numerical pathology: Quirk’s problem.

3. The Computational Instability

First, a general description of the numerical method is given. Some features of the
various schemes used in this study are described. Then, a review of the actual avail-
able knowledge concerning the carbuncle phenomenon and the odd-even decoupling is
detailed.

3.1. Numerical background

Let us consider the Euler equations under the conservative form

ou
E +divH = 0, (31)
where U is the vector of conservative variables (p, pU, pe)t and H, the tensor of convective
terms (pU, pU -U" + P, pUh;)*. Partial differential Euler equations are written in integral
form, by integrating over a volume. According to the finite volume method, cells are
ou
—dQ + H-ndS = 0. (3.2)
., Ot 09 ;
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If U; ; denotes the average value of U in (); ;, conservative explicit methods on a
structured mesh can be expressed under the following form
n+1 n At * * * * _
Uy ; _ui,j_'_—Q} , ([SFn]i+1/2,j - [SFn]iA/z,j + [SFn]i,j+1/2 - [SFn]i,j71/2) =0, (3.3)
i\j
where Sj /s ; is the measure of the interface between ; ; and Qi1 ; and (F})it1/2,5
the numerical flux evaluated on the same interface with the associated normal vector
Nit1/2,j- The numerical flux is a function of two states and completely depends on the
scheme used. In first order schemes, both these states are the average states of cells
separated by the considered interface. The numerical flux must satisfy the consistency
condition
Plin
FxU,U)y=HU) n=| pUup,+p-n |, (3.4)
punh;

where u,, = U - n.

Several schemes are used in this study. Most of them share the same origin: the numer-
ical flux involves a more or less sophisticated solution of the local Riemann problem. This
includes the classical Roe’s scheme (Roe (1981)) and Osher’s one (Osher (1983)) and the
more recent HLLC scheme first proposed by Toro et al. (1994) and modified by Batten
(1997). It is pointed out that all of them share the same property of exact resolution
of a stationary contact discontinuity. In other words, the numerical dissipation vanishes
transversely to a contact discontinuity. In order to investigate numerical dependencies,
another scheme which does not share this property is used in the numerical study: EFM
kinetic scheme has been proposed by Pullin (1980) and yields both robustness and a
great deal of numerical dissipation on contact waves. It belongs to the class of Flux
Vector Splitting schemes and generates similar results to the ones obtained by van Leer
(1982) scheme or the two-waves variants of the HLL family, see Harten et al. (1983) and
Einfeldt et al.(1991).

All these methods are originally proposed with the first-order accuracy. Some higher-
order computations are presented using the classical MUSCL extension of van Leer
(1979).

Note that the time step is computed from a classical CFL-like condition. It is checked
that it is ruled by the longitudinal flow and does not depend on the crosswise size of cells
for all presented computations.

3.2. Description of the original Quirk’s problem

This test has been proposed by Quirk (1994). It consists of an unsteady computation
of the propagation of a planar shock in a duct, where the flow is initially at rest. Al-
though initial conditions and the expected solution are one-dimensional, the computation
involves the 2D Euler equations on a two-dimensional structured grid. The physical prob-
lem only depends on the shock wave Mach number M;. It is defined as us/ag where ug
is the speed of the traveling shock wave and ag is the speed of sound of the upstream
flow, i.e. the flow at rest. M, has been set to 6 in the original test case.

Although the computation is unsteady, one can include the basis of the theoretical
analysis by choosing a shock related coordinate system. The upstream Mach number M
is then the shock wave Mach number M.

The computational mesh is initially a uniform cartesian grid of 800 x 20 cells for a
40 x 1 length unit duct. However, the centerline of the mesh has been slightly perturbed
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FIGURE 4. Sketch of the grid in Quirk’s problem.

6

FI1GURE 5. Temporal evolution of the unstable shock wave in Quirk’s problem, density
contours.

following

Yijmia = Yimia T (_1)Z -107°. (3-5)
A sketch of the grid where the perturbation of the centerline has been exaggerated to
make it visible is presented in figure 4. Initial conditions are for a flow at rest. As a left
boundary condition, the flow is set to the right inflow state computed from Rankine-
Hugoniot equations so that the shock propagates with the right speed. The right bound-
ary condition is a simple extrapolation technique. The upper and lower bounds are treated
as symmetry lines to simulate wall condition for inviscid flows.

This test is known to result in an unexpected disturbance of the shock shape. The
expected solution is a discrete representation of a sharp shock with a constant velocity,
which is an obvious solution of the continuous equations. Quirk reported this insidious
failing and linked it to high-resolution computations of planar shock waves. This insta-
bility has been named odd-even decoupling and consists in the unexpected growth of
perturbations along planar shock which are aligned with the mesh.

A classical example of this instability follows: in figure 5, the time evolution is rep-
resented through six successive snapshots which have been superimposed on the same
duct. As the shock propagates downstream, perturbations appear at the intersection
of the shock and the centerline. They grow in the transverse direction and dramatically
perturb the shock shape which velocity increases slightly until it completely breaks down.

In the same paper, Quirk (1994) proposed an analysis of Roe’s scheme and the HLLE
Einfeldt et al.(1991) scheme. A more detailed analysis has been proposed by Gressier
& Moschetta (1998a) and links this pathological behaviour to the marginal or neutral
stability of the method in a simplified form of the discrete conservation equation (3.3).
The same results have been confirmed on many schemes by Pandolfi (1998). Later on,
all schemes which yields the vanishing numerical dissipation on contact waves, have been
proved to be neutrally stable and then exposed to highlight the instability appear (see
Gressier & Moschetta (1999)).

However, in the following section, the numerical computations are performed in order
to attest the connection with the analysis presented in section 2. The numerical schemes
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FIGURE 6. Instability threshold for two values of the mesh perturbation (Roe’s scheme,
CFL=0.45).

will not be analyzed for their discrete stability properties but for their capability of
reproducing the right dynamics of the continuous equations which have been discretized.

4. Numerical Results and Dependencies

The aim of this section is to compare the shock instability presented by the theoretical
analysis (section 2) with the numerical disturbance of shock profile observed in Quirk’s
problem. Although a time evolution observed in Figure 5 is numerical evidence of this
instability, this behaviour appears in the non-linear regime and cannot be used to study
the linear stability of the flow.

Perturbations must be extracted when their magnitudes are still small enough com-
pared to the average flow quantities. But perturbations around the shock are extremely
difficult to extract: the computation is not stationary and the shock is thick. Since the
variations in the shock thickness are not known, one cannot extract perturbations without
introducing errors which could be larger than the perturbations themselves.

On the other hand, since the propagation of a stable shock is one-dimensional, the
transverse velocity is expected to remain zero. Then, every non zero value of the trans-
verse velocity directly stands for the perturbation of this quantity. In the following, the
state of the perturbed flow has therefore been represented by the maximum value of the
transverse velocity in the flow.

The instability of the shock is produced using Quirk’s problem with different shock
wave Mach numbers M.

4.1. Instability threshold

The classical test case is performed with a shock wave Mach number of 6. When com-
puting the same problem with different shock wave Mach numbers M, a threshold is
highlighted: the shock instability does not appear when M; is below a threshold M.
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In Figure 6, the magnitude of the transverse velocity when the shock arrives near the
end of the duct is plotted versus M, the shock wave Mach number. When M; is below
approximatively 2.3, perturbations are about the mesh perturbation magnitude (10~°
or 107%) at the end of the computation. This magnitude level can be observed even for
very dissipative schemes which do not make the shock instability appear: it is just a
consequence of a mesh perturbation as a forced mode. Indeed, the mesh perturbation
produces small perturbations of the physical quantities but they remain at a low level
and are restricted to around the centerline. In this case, the instability is not expected to
appear even for longer ducts. On the other hand, when the shock Mach number is above
the threshold, at the end of the duct, perturbations have been amplified and are expected
to carry on growing. Using the same numerical choices, the threshold is about M¢ = 2.35
and is thus almost independent on the mesh perturbation. This result confirms a linear
instability mechanism for which the initial amplitudes do not play any role.

However, the numerical threshold is some that larger than the theoretical one, My, = 2.
Moreover, it should also be pointed out that the theory predicts an unstable mode only
for this singular Mach number while numerical computations demonstrate a threshold.
However, to the authors knowledge, this intrinsic stability threshold has never been
pointed out.

Similar curves are plotted in Figure 7 using different CFL numbers. The threshold M¢
is shown to be dependent on the CFL number. This is one of the direct dependencies on
numerical parameters, which obviously cannot be predicted by the theoretical analysis
of continuous equations. However, all the numerical thresholds M¢ are greater than the
theoretical one My, given by (2.34). Furthermore, the higher the CFL number, the closer
to My, the numerical threshold M¢ is. For numerical stability reasons, one cannot use
CFL numbers higher than 0.7 in order to avoid numerical oscillations in the flow.

This dependency is not surprising since the CFL number is intrinsically involved in
the numerical dissipation of a given scheme.
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Some remarkable results are presented in Figure 8: three of the presented schemes
yield the same numerical threshold M. These three schemes are Godunov-type methods,
which yield the exact resolution of contact discontinuities and are known to make the
odd-even decoupling appear, see Gressier & Moschetta (1998b) and Pandolfi (1998).
The linear amplification is the same for the three schemes. Only the non-linear response
differs.

As expected, the EFM kinetic scheme is very robust and does not make the instability
appear. Only the forced response can be observed: it does not depend on the shock Mach
number M and remains at the same level (3-1077).

These results tend to raise an intrinsic instability in numerical schemes if they are not
too dissipative. In other words, the more a scheme is able to solve Euler equations, the
more it could suffer from the shock instability.

The last results (Figure 9) are aimed at proving that second order methods do not
avoid this instability, see Gressier & Moschetta (1999) for additional results. Moreover,
using the same CFL number which must be low in second order computations, the
shock instability is shown to appear more easily with the second order scheme since
the threshold has decreased. The second order computation has been performed with a
classical MUSCL extension of Roe’s scheme (van Leer (1979)).

4.2. Temporal amplification

In this section, the aim is to determine a numerical amplification factor for comparison
with the theoretical one w; = kyUl. This test is severe because high numerical depen-
dencies are expected. Nevertheless, the aim is to show similar behaviours of numerical
and theoretical amplification factors. Several computations are performed. The maximum
transverse velocity perturbation is plotted at successive times intervals.

Figure 10 shows a marked dependency on the CFL number. This dependency prevents
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FIGURE 10. Temporal amplification, dependency on the CFL number (Roe’s scheme, M, = 6).

any attempt at precisely recovering the theoretical one. But, as expected, points are more

or less aligned for small amplitudes. This indicates therefore an exponential growth.

The transverse wave number k, is inversely proportional to the wavelengths. Hence,
the theory predicts that the smallest wavelengths are the most amplified. The minimum
wavelength is the length of two cells. It is verified that oscillations are sawtooth like. Since
w; is proportional to k,, it is predicted that the amplification factor should be related
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N, 10 20 40

w; 6.34 10.8 16.6

TABLE 1. Temporal amplification coefficients

to the number of cells N, (for a fixed width of the duct). Using the successive level of
perturbations, one can compute numerical amplifications factors. Points are expected
to be aligned in order to represent an exponential growth. Values between 10~° and
1072 are used to compute the slope in order to avoid the influence of forced responses
for low perturbation magnitudes and of the non-linear response for high perturbation
magnitudes.

Figure 11 presents three computations with successively halved sizes of crosswise com-
puting cells. They have been performed using the same shock wave Mach number M
and the same CFL-like condition, i.e. the same time step. While the amplification fac-
tors can be expected to double with successive refinement, the computational factors are
underestimated and the linear dependency to IV, is not attested. However, the expected
trend of the evolution of the amplification factors is clearly confirmed.

5. Theoretical and Numerical Agreements
5.1. Space-Time Behaviour

The aim of this section is to prove that the numerical instability originates in the shock
instability detailed in the first section. In the linear stability context, the space-time
behaviour of the instability is ruled by the dispersion equation. It links the temporal
amplification w to the spatial behaviour which is represented by k, and k,. Hence, the
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relations (5.1) strongly characterize the instability.
w=1ik,U1 and Kk, =ik, (5.1)

In order to check these relations, the spatial behaviour of the fluctuating quantities in the
numerical computations are compared with theoretical predictions. The method used is
to measure the temporal amplification of the perturbations from the numerical results.
Then, one can derive the wave numbers k, and k, and compare the spatial behaviour
of the fluctuating quantities in the numerical computation and the behaviour which is
theoretically predicted from the amplification factor via the dispersion relation.

Applying this general framework to a given computation, which is featured by a shock
wave Mach number of 6 and a CFL number of 0.7, the eigenfunctions will be compared to
the theoretical predictions at the time ¢ = 1s. Only the evolution of the fluctuating trans-
verse velocity is presented: extracting the fluctuations of the other quantities from the
instantaneous field generates too significant errors to be properly compared. Moreover,
comparisons are performed far away from the centerline where the mesh perturbation is
likely to perturb the accuracy of the comparisons.

Figure 12 shows the temporal evolution of the maximum value of the transversal veloc-
ity in the computation. The comparison should be performed in the linear zone: it must
not have too low an amplitude in order to prevent being disturbed by the forced regime
which is caused by the mesh perturbation (3-10~7), and have small enough amplitude to
avoid saturation where non-linear effects cannot be neglected any more (see figure 12).
Between these two zones, one can observe the exponential growth of the perturbation:
this corresponds to the linear zone. The evolution of the slope of the transverse fluctua-
tion velocity in this zone allows evaluation of a numerical amplification factor w; = 10.8.
It is pointed out that this amplification factor does not depend on the magnitude of the
mesh perturbation (see figure 12). Using the temporal amplification factor w;, one can
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write the spatial evolution of the fluctuating transverse velocity eigenfunction as

’Uj;- — Re I:Ax*eik”x*] Dispersion relation ’Uj;- — Re I:Ax*e_%—ix*]’
where A is an arbitrary complex amplitude.

Figure 13 represents the comparison between the numerical spatial evolution and the
prediction through the dispersion relation. Several evolutions have been plotted using dif-
ferent heights y. Since they are extracted from the same computation, the amplification
factor w; is the same. The four spatial evolutions are then predicted to be proportional
to each other. Since the theoretical perturbation is defined within a constant of pro-
portionality, the amplitude A of the theoretical eigenfunction has been tuned to fit the
numerical evolution in z, this amplitude has been determined for each y independently.
Plotted results of Figure 13 show a good agreement for each section in the channel and
then establish the strong link between the theoretical dispersion relation and the com-
putation.

The principal features of the transverse fluctuation velocity are retrieved. The fluc-
tuating velocity is continuous across the shock (see 2.36), it yields a maximum before
decreasing far from the shock and the location of its maximum is correct. Theoretically
the location of this maximum, z,,, is proportional to U /w;.

The validation of the theoretical dispersion relation which strongly features the insta-
bility proves that both numerical and theoretical phenomena are related. Indeed, this
numerical pathology would be an intrinsic instability of the continuous Euler equations.

Even if absolute values cannot be predicted by the theory, mainly because of un-
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avoidable numerical dependencies, the featuring link between both temporal and spatial
behaviour has been confirmed.

5.2. Gamma dependency

Several computations have been performed using Roe’s scheme, two different CFL num-
bers (0.45 and 0.7), a large range of shock wave Mach numbers Mj, and several values
of the ratio of specific heats . Some of these results are presented in Figure 14.

Then, one can determine some numerical thresholds which are plotted in Figure 15 and
which are compared to the theoretical prediction. There is striking agreement between
theoretical and numerical results in the physical range of 1.0 to 2.0 for 5. For larger
values of v, the numerical thresholds are more sensitive to the CFL numbers used and
do not follow as closely the theoretical value.
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However, the slight discrepancy observed in the vicinity of v = 3 has no tragic conse-
quence for practical gas dynamics applications. It should be noticed that v = 3 stands
for a pure one-dimensional gas even though the studied instability is two-dimensional.
Furthermore, it was expected that the stiff asymptotic behaviour in the vicinity of v = 3
would be difficult to reproduce, see (2.34). The corresponding downstream Mach numbers
M _ have been plotted in Figure 16 and are compared to the theoretical prediction which
is 1/+/3. In the vicinity of y¥ = 3, the downstream Mach number is more significant to
retrieve since the upstream Mach number increase to infinite values and the downstream
flow becomes insensitive to the upstream Mach number. Since the numerical thresholds
M, are minimum values, M, Mach number are maximum values. There is a striking
agreement between theoretical and numerical results.

First, the existence of a threshold for this numerical behavior was not known. Moreover,
the dependency on 7y shows a remarkable agreement with the theoretical prediction of the
shock stability analysis. This tends to prove that both phenomena are closely related.

6. Conclusions

The analytical methodology of the present work is based on three successive steps:
identification of a “strange mode” of the continuous inviscid equations, proof that the
numerical carbuncle phenomenon is triggered by an instability mechanism and demon-
stration that both instabilities coincide. Let us sum up successively the major points of
each step.

1. General solutions of linearized perturbed Euler equations are obtained upstream
and downstream the shock respectively. This study has allowed clarification of the math-
ematical formalism used by Dyakov (1954) and Swan & Fowles (1975). In each zone,
the disturbance is written as the sum of four waves the magnitude of which are un-
known constants. These constants are determined by boundary conditions. These ones
are the linearized Rankine-Hugoniot relations, the slip conditions at the side walls and
the damping condition for fluctuation far away from the shock. Considering a temporally
amplified mode, it is proved that all four unknown constants which feature in the pertur-
bations upstream of the shock should be zero i.e. there is no amplified mode upstream.
Downstream of the shock, one of two acoustic-like perturbations should vanish (i.e. the
corresponding constant should be zero). Finally, the remaining three unknown constants
and an additional one which represents the amplitude of the shock displacement, are de-
termined by the shock relations. A dispersion relation is then obtained. After analyzing
this dispersion relation, one “curious” unstable mode is shown to satisfy it, although this
has never been found by previous analysis. This mode is curious because it does not have
the classical form of a normal mode, it comes in fact from a Jordan decomposition of
the stability matrix. Moreover, this instability is very surprising because it only exists
for one value of the upstream Mach number Mg.. With the exception of this value this
value this instability does not exist. From a theoretical point of view, the linear stability
of a shock wave in a constant and uniform mean flow is now completely solved.

2. The first consequence of the present study affects the field of numerical calcula-
tion of shock waves. For many years, a pathological phenomenon, the so-called carbuncle
phenomenon, has been encountered when computing shock waves. In the CFD commu-
nity, this behaviour has been usually considered as a purely numerical instability. The
carbuncle phenomenon is one example of the numerous situations in which multiple so-
lutions to the Euler equations can be obtained starting from initial conditions Ivanov
et al. (1995), Li & Ben-Dor (1997). Even the presence of viscosity does not guarantee
the uniqueness of a solution to the Navier-Stokes equation at high Reynolds numbers
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Hafez & Guo (1999). In this present paper, a numerical study of the pathology has been
performed through a simplified test case, namely Quirk’s problem which is likely to be
represented by the following analysis. The development of the instability has been proven
to be ruled by a linear instability mechanism. Indeed, the temporal growth of the per-
turbation fits an exponential curve and does not depend on the magnitude of the mesh
perturbation. An intrinsic numerical threshold has been determined. It yields a relative
independence from the numerical schemes used. This result is totally new, although it
was known that the carbuncle phenomenon would be more likely to appear when the
Mach number is high (Quirk (1994)).

3. Concerning the link between the numerical simulations and the “curious mode” the

following results have been obtalned Firstly, the numerical computations, if unstable,
exhibit an instability threshold M in terms of the shock wave Mach number M, which
is independent of the forced perturbatlon The obtained value M is somewhat larger
than the theoretical critical value Mg.. Moreover, in the computatlons M appears as
a threshold whereas My, is a theoretically unique value. These aspects may be due to
unavoidable numerical dissipation and to shock thickness. It can be guessed that the
instability occurs when the numerical local Mach number crosses the theoretical M. in
the shock thickness. We can propose the following explanation. The computed shock has
a small but non zero thickness (there are typically 3 or 4 cells in z in the shock thlckness)
When the upstream Mach number Mj is higher than the critical Mach number M,_,
necessarily exists a cell in the shock thickness for which the Mach number on the face
in going is higher than the Mach number M, and that on the outgoing face is lower
there. One can think that in this cell, the local system to solve is more or less singular;
in any case the determinant of the linearized system (for the continuous case) passes by
zero. It is the crossing of this singular value which is likely to start the mechanism of
instability. Since the numerical shock is not a pure discontinuity in contrary to the case
of the continuous Euler equations, it is for higher value that the critical Mach number
than the mechanism of instability appears. Additional effort must be made in terms of
discrete dynamics in order to understand precisely the flow structure in the 3 or 4 cells
present in the shock thickness. The key result however is that this numerical instability
is already present in the continuous equations. Both instability mechanisms coincide as
demonstrated by the space-time structure of the perturbation. If unstable, the numeri-
cal results exhibit an exponential growth. Due to unavoidable numerical dependencies,
absolute values are difficult to retrieve. However it is possible for a given computation to
extract a theoretical growth rate w;. Then the theory predicts the spatial wave numbers
kg and k, (from the dispersion relation) and consequently the shape of the eigenfunction.
As the latter is in perfect agreement with the numerical results, it can be concluded that
the numerical instability coincides with the theoretical mode. Moreover, concerning the
link between the threshold MZ with the coefficient «y, the behaviour is well represented
by the theoretical expression.
For many years, it was tacitly assumed in the CFD community that the carbuncle phe-
nomenon was a purely numerical problem. The present work demonstrates that this is not
true. The point of view of the numerical schemes is now completely reversed concerning
their behaviour with respect to the carbuncle phenomenon. The findings of this paper
point the way to further analysis which would include a particular form of the numerical
flux in order to account for the observed numerical dependencies. Since the pathology is
intrinsic to the Euler equations, this study points out that numerical scheme should be
designed in the framework of the Navier-Stokes equations.
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