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Thanks to a biglobal linear stability analysis1 , the intrinsic instabilities responsible of
the thrust oscillations arising in large segmented solid rocket motors have been identified.
Comparisons between the theoretical predictions coming from the linear stability analysis
and experimental results on subscale motors have given excellent agreements2 . Thus, it
appears that the frequency signature of the thrust oscillations characterized by frequency
paths is directly due to the merging of the intrinsic instabilities of the flow.
However some points remain unclear in the theoretical approach. In order to analyze these
points DNS calculations have been performed. Beyond a simple validation of the theoretical
results, these DNS calculations provide a new way to access the interaction that can exist
between acoustic modes and intrinsic instabilities inside solide rocket motors.

Nomenclature

ωi temporal growth rate
ωr circular frequency
θ azimuthal angle
R Radius of the model flow
r radial position
R0 Radius of the VALDO cold gaz facility
sq

ac Acoustic part of the physical quantity q : sq
ac = sq

fluc − sq
th

sq
fluc Fluctuating part of the physical quantity q
sq

th Theoretical evolution of the eigenmode q
t time
Vinj Velocity injection of the model flow
x axial position
Xe length of the truncated domain

Subscripts
()i imaginary part
()r real part
− vector

I. Introduction

Large segmented solid rocket motors exhibit thrust oscillations which are due to inflow pressure fluctua-
tions. For years this problem has been investigated, especially in the framework of the P230 development,

the booster of the european Ariane 5 launcher. Recently, intrinsic instabilities of the flow have been identi-
fied1 as the primary source of the pressure fluctuations. These instabilities have been found thanks to a linear
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stability analysis. Using the results of this approach, successful comparisons2 have been done with subscale
solid rocket motors measurements3 . Moreover cold gas experiments, conducted by G. Avalon4 provide a
large amount of data in a configuration close to the theoretical model. In this case too, the comparisons
between the experimental results and the theoretical ones give a very good agreement. However some points
remain unclear and it is necessary to use another approach to validate these results. For that purpose, DNS
calculations have been performed.
Before exploring the DNS results, the first part of this paper is dedicated to the linear stability analysis which
is used to find out the intrinsic instabilities of the motor flow. The unresolved problems of this stability
approach will be pointed out. Then, the computation strategy using DNS calculations will be described. The
expected validation of the theoretical results by the DNS results will be investigated. Beyond this validation,
it will appear that these calculations highlight interactions between the intrinsic instabilities and acoustic
modes.

II. Biglobal Linear Stability Analysis

First we define a model flow standing for the mean flow occuring inside solid rocket motors. The model
geometry is a semi-infinite cylinder of radius R. Fluid is injected through the wall at a constant and uniform
velocity Vinj in the radial direction r, in order to simulate the gaz ejection on the combustion surface of the
propellant. The lengths and the velocities are made dimensionless with the radius R and the velocity Vinj .
The semi-infinite cylinder is truncated at x = Xe in order to compute the mean flow thanks to the CEDRE
code (ONERA), see the section A of part III. Figs. 2(a) and 3(a) give a view of the mean flow velocity
components for Xe = 8R0 = 0.24 m. One notes that this flow is very close to the Taylor-Culick flow5,6

except in the front wall region where a boundary layer appears due to the no-slip condition. This flow is
computed in the (x, r) plane using the axisymetric hypothesis and assuming a laminar flow. The agreement
obtained between the computed flow and the Taylor-Culick one confirms the incompressible behaviour of the
flow. Many measurements, like in the VALDO (radius R0 = 0.03 m) cold gaz facility at ONERA Palaiseau,
show a very good agreement with the theoretical Taylor-Culick flow. This validates the chosen model flow.
The two parameters R and Vinj of the model flow are used to made all the physical quantities dimensionless.

Thus, a Reynolds number Re =
ρRVinj

µ
is defined and is the only remaining parameter which appears

in the Navier-Stokes equations. A stability analysis is performed, based on a perturbation technique such
that any physical quantity Q is written as a superposition of a mean value Q̄ and a fluctuating part q.
The superposition is introduced into the Navier-Stokes equations, and after some simplifications and a
linearization, a linear system is obtained which coefficients are functions of the mean flow only.

The perturbation q is searched as :
q = q̂(x, r)ei(nθ−ωt) (1)

because the mean flow depends on x and r and only on them. In this expression, n is an integer and
represents the azimuthal wave number, ω is a complex number, its real part stands for the circular frequency
and its imaginary part for the temporal growth rate.

As a first study, only the axisymmetric modes are searched, meaning that n = 0, and thus a stream-
function φ can be defined for the perturbation. The linearized Navier-Stokes equations written for the
streamfunction φ lead to a partial differential equation (E) in (x, r) of order 4. This equation is solved
for (x, r) ∈ [0, Xe]× [0, 1]. Boundary conditions are imposed for the streamfunction, the critical point is to
determine an appropriate outflow condition7,8 at x = Xe. After discretization in the computational domain,
(E) is written as a generalized eigenvalue problem A Φ = ω B Φ. Then, an Arnoldi algorithm9 is used to
compute the eigenvalues ω and the associated eigenfunctions.

One of the output of the calculation is the set of complex eigenvalues ω which defines the spectrum of
the stability problem. An example for Re = 1975 is given in Fig. 1. An eigenvector Φ is associated to
each calculated eigenvalue, which coefficients represent the discretized values of the associated eigenfunction
φ̂(x, r). The whole perturbation q = q̂e−iωt, i.e. {ux, ur, p}, is called mode and can be identified by ω. Once
the results of the stability analysis are turned into dimensionnal quantities using the parameters R and Vinj ,
any physical perturbation q for a given mode ω = ω0 can be written as :

q = Aq̂ei
Vinj

R ω0t = A [(q̂)r cos(2πft) + (q̂)i sin(2πft)] eνt with f =
Vinj

2πR
ω0

r and ν =
Vinj

R
ω0

i (2)
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Figure 1. Set of eigenvalues in the complex (ωr, ωi) plane for Re = 1975. Two cases are shown : Xe = 8 (red
squares) and Xe = 10 (green triangles).

where A is an unknown constant value standing for the initial amplitude of the perturbation. In fact as a
solution of a linear system the initial amplitude A of the perturbation q is actually unknown.
Two major results coming from the stability analysis can be pointed out. First the spectrum is discrete.
There is only a discrete set of circular frequencies that can develop in the main flow. Second, all the eigen-
values have a negative imaginary part. This means that the modes will be exponentially damped in time.
However, the associated eigenfunctions are exponentially growing in the streamwise direction. Figs. 2(b)

and 3(b) present the spatial evolution of the real part of the eigenfunctions ûx =
1
r

∂φ̂

∂r
and ûr = −1

r

∂φ̂

∂x
associated with the eigenvalue ω = 40.409 − 9.164i (Xe = 8R0). It clearly shows a strong amplification
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Figure 2. Longitudinal components of the velocities of the basic flow Ūx and of perturbation ûx (real part).
Here the initial amplitude A and time of formula 2 are t = 0 and A = 0.01A0.

(exponential-like amplification) in the streamwise direction. Thus for a given eigenvalue, there are two
opposite effects : the perturbation decreases when time is running and it is exponentially growing in the
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Figure 3. Radial components of the velocities of the basic flow Ūr and of perturbation ûr (real part).

longitudinal direction x.

The stable behaviour of the stability modes has given a new insight on the thrust oscillations arising2 .
The frequency paths observed on all subscale or fullscale solid rocket motors are due to the merging of these
intrinsic instabilities of the flow. The merging is believed to result from the coupling between the stability
modes and the acoustic ones. The instability modes are excited by some sources (cavity, acoustic modes,...)
and are then damped according to the stability theory.
Even if the linear stability analysis has provided the basis of a scenario for the origin of the thrust oscillations,
it has also exhibited some unresolved problem. In particular, Fig. 1 illustrate the dependance on Xe of the
eigenvalues. There is no physical explanation for such a fact. It is possible that it results from the numerical
procedure which could lead to the calling into question of the stability analysis validity. It is thus extremely
important to know more about this dependance. DNS calculations are then performed.

III. Direct Numerical Simulation

DNS computations are performed with the use of an ONERA code called CEDRE. The space discretiza-
tion is based on a finite volume approach and uses an upwind Roe scheme with a second order extension
(MUSCL method with Van Leer limiter). A code description can be found in10 and more specific information
concerning the code validation for space applications are given in11 .
For the present study, laminar Navier-Stokes computations are performed. In order to be realistic, the
characteristic length and velocity are chosen to match the VALDO ones4 . It means that for the DNS com-
putations the radius of the pipe is R = R0 = 0.03 m and the injection velocity is Vinj = 1 m/s.
Four meshes have been tested and mesh independency has been checked. The presented results for Xe = 8R0

have been performed with the use of a grid composed of 301× 161 nodes (cosine repartition) such that the
thickness of the cells on the boundaries is about 3 µm.

A. Steady calculations

An implicit time scheme is used with a fixed value of the CFL number : CFL = 10 for the steady calculations.
The purpose of these calculations is to compute the basic flows which are used for the linear stability
calculations. It is possible to use the Taylor-Culick flow as basic flow for the stability analysis but it does
not satisfy the front wall boundary condition : a no-slip condition at x = 0 is indeed mendatory for a viscous
flow, which is not satisfied by the Taylor-Culick solution. However, the boundary layer which develops at
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x = 0 only acts in the vicinity of the front wall, where the fluctuation is nearly zero, see Figs. 2(b) and 2(b),
and so the use of the Taylor-Culick solution leads to the same kind of stability results. For more details
see12 .
Once the computation is converged, the steady flow is then used as basic flow for the stability calculation.

B. Unsteady calculations

For these computations an explicit time scheme is used with a time step ∆t = 5.10−9 s. The resulting
maximum CFL number is lower than 1.
As mentionned above, the goal of the DNS calculations is to validate the results exhibited by the linear
stability theory. The adopted strategy is to superimpose at the intital time a stability mode ω = ω0, see
Figs 2(b) and 2(b) for an example where ω0 = 40.409 − 9.164i, to the previously computed basic flow, see
Figs. 2(a) and 3(a). The initial time t and amplitude A of formula 2 are chosen as t = 0 s and A = 0, 01A0

where A0 is the maximum value reached by the longitudinal component Ūx of the mean flow. It is important
to note that the pressure perturbation of the stability mode is not superimposed to the pressure distribution
of the mean flow. It does not generate a strong noise at the beginning of the computation because the
amplitude of the pressure fluctuation is very low. The process which leads to this superposition is not
simple, grid projections must be done without introducing artificial errors. As special attention has been
paid on the boundary conditions.
For stability exploration in such a flow, other strategies can be used. For example S. Apte and V. Yang13 ,14

used a white noise or an acoustic excitation to performe LES calculations where instabilities are excited.
Once the superposition is done, the computation is started. The origin of time is defined at this moment : t =
0 s. At t = 0.02 s, that is to say after 4, 000, 000 iterations, the calculation is stopped. Signals from different
sensors previously defined are analyzed.

C. Three different computed cases

Using the strategy decribed above, for given values of R and Vinj we can performed different computations
by changing the eigenmode introduced at t = 0 s or the length of the pipe Xe. In this paper, three cases are
presented :

• Case 1 corresponds to the introduction of the mode ω0 = 40.409− 9.164i for a pipe length Xe = 8R0.

• Case 2 corresponds to the introduction of the mode ω0 = 40.367− 7.302i for a pipe length Xe = 10R0.

• Case 3 corresponds to the introduction of the mode ω0 = 68.679− 7.594i for a pipe length Xe = 8R0.

The first two cases are actually only differing one from another by the pipe length Xe. On Fig. 1 one can
see that the mode ω = 40.409− 9.164i, calculated for Xe = 8, is moving to ω = 40.367− 7.302i for Xe = 10.
It is the same mode.
The acoustic frequencies are functions of the pipe length Xe, see the paragraph 1. For the two first cases,

the first acoustic mode has a frequency which is far from the introduced mode frequency f =
Vinjω

0
r

2πR0
. Af

course it is also true for the circular frequencies. Because of this, linear behaviours are expected for the
perturbations. Contrary to the two first cases, the third one implies a mode which frequency is very close
to the first acoustic mode one. Thus, non linear interactions should act and lead to slightly different results.
To illustrate these three cases, Fig. 4 presents a sketch where the circular frequencies are drawn with respect
to the pipe length Xe.

IV. Results

A. Case 1

For a truncated domain of length Xe = 8R0 = 0.24 m, the mode ω = 40.409 − 9.164i is superimposed
to the basic steady flow. At t = 0 s only the real part of ûx and ûr, i.e. (ûx)r and (ûr)r are added
to Ūx and Ūr respectively. Let be sq

fluc the difference of the signal of a sensor and its steady part (the
value of the corresponding basic flow component). Any signal sq

fluc can be compared to the theoretical
evolution sq

th given by formula (2) which rules the temporal behaviour of any fluctuation q according to
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Figure 4. Sketch representing the three computed cases.

the linear stability theory. Figs. 5(a), 5(b), 5(c), 5(d), 5(e) and 5(f) show the comparisons between the
signals sq

fluc and the theoretical evolutions sq
th for q = ux and q = ur at three different locations (which are

indicated on the top of each figure a). The comparisons give a excellent agreement for signals of the radial
velocity components : sur

fluc = sur

th , especially on Figs. 5(a) and 5(c). For the third sensor, the signal sur

fluc

is perturbed by noise but the general behaviour corresponds to the theoretical evolution sur

th . In fact, the
spatial perturbation (ûr)r introduced at t = 0 s in the computation follows its theoretical evolution which
implies (ûr)i, ωr and ωi. Thus the circular frequency ωr = 40.409 and the temporal growth rate ωi = −9.164
are extremely well recovered by the computation.
However some differencies appear on the signals of the longitudinal velocity component : sux

fluc 6= sux

th . As
sur

fluc = sur

th there must be a part of sux

fluc which corresponds to sux

th . The question is to find out what can
be the difference sux

fluc − sux

th . It is ”obviously” a combination of acoustic modes of the pipe. One notes
sq

ac = sq
fluc − sq

th.

1. The acoustic boundary layer

In the case of a pipe flow induced by wall injection an analytical solution exists, it has been found by J.
Majdalani et al.15,16 . Only the basics of the approach used by the authors are reminded in this paper.
Considering the compressible Navier-Stokes equations, a perturbation q of the mean flow Q̄ is searched. The
considered mean flow is the Taylor-Culick one, which is closed to the computed one used for the calculation
except in a region closed to the front wall. Thus, the final analytical solution is not valid in this little
region. The perturbation q is devided into two different parts q = q̌ + q̃. q̌ is an irrotational compressible
perturbation and q̃ is an incompressible rotational one. In fact, one finds that q̌ stands for the classical plane
wave solution which is the acoustic wave solution in a pipe without flow. Thus, q̃ is the correction brought
to take into account the effect of the flow Q̄ on the plane wave q̌ : q̃ is explicitly the acoustic boundary layer.

aThe french word ”capteur” means sensor
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the theoretical evolutions sq
th given by formula (2).
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Finally one obtains : 
p̌(x, t) = cos (ωmx) e−iωmt

ǔ(x, t) = i sin (ωmx) e−iωmtex

(3)

where p̌ and ǔ are the pressure and velocity fluctuations of the plane wave solution. ωm = (m − 1
2 )π/L,

m ∈ N∗, is the circular frequency. Concerning the acoustic boundary layer one finds :
ũx = −i sin(θ) sin(ωmx sin(θ))e[ζ−i(ωmt+Φ)]

ũr = −M
r

sin3(θ) cos(ωmx sin(θ))e[ζ−i(ωmt+Φ)]

(4)

ζ and Φ are functions of the radial position r and are given by :

ζ = ζ0 + ζ1 , Φ = Φ0 + Φ1

ζ0(r) = ξ
η(r)r3

sin3(θ)
, Φ0(r) =

Sm

π
ln tan

(
θ

2

)

ζ1(r) = −2π2

S2
m

ξ
η(r)r3

sin3(θ)

(
cos(2θ) +

sin(2θ)
2θ

)
, Φ1(r) = − 2π

Sm
ξ
η(r)r

sin2(θ)

(
1 +

3θ
tan(θ)

)

ξ =
ω2

m

M3Re
, θ = π

r2

2
, η(r) = − 1− r

1 + 3
2 (1− r)3/2

(
1−r

r − 3
2 ln(r)

)
(5)

Thanks to the expressions 3, 4 and 5, a complete analytical solution of acoustic modes in a pipe is available,
taking into account the effect of the mean flow Q̄. As mentionned before, this solution is not valid in the
front wall region since the basic flow is different from the Taylor-Culick one. However, it does not have major
consequences for comparisons with the DNS calculations.
The signals sq

ac can be decomposed on the basis of these analitycal acoustic modes to analyze them. Implicitly,
we assume that the acoustics exhibited by the DNS calculation is a linear combination of acoustic modes.
The coefficients of the decomposition are noted Am.

2. Decomposition of the acoustics using a Least Square technique

Any signal sp
fluc is mainly composed by the acoustics of the pipe because the stability mode pressure fluc-

tuation is very weak, all the more so since x is small. Thus, we have sp
fluc ≈ sp

ac. Given that the acoustic
boundary layer for the pressure is zero, i.e. p̌ = 0, it is more accurate to look for the coefficient Am of the
decomposition of the recorded acoustic signal on the basis of the M first analytical acoustic modes on the
pressure signal sp

ac. However, it could be done on sux
ac where the acoustic boundary layer part is non-zero.

Finally, using a least square technique, the coefficient Am of the 100 first acoustic modes are searched on the
signal sp

ac of a given single sensor (sensor 21 located at x = 0.2 m and r = 0.03 m). The comparison between
sp

ac for sensor 22 and the combination of acoustic modes is given on Fig. 6(a). On Fig. 6(b) the coefficients
Am of the combination are plotted with respect to the mode number m. To mimic the viscous dissipation
which leads to the damping of the acoustics, a hand-made function Fµ is added to the combination. This
function will be used for all the sensors signals whatever the physical quantity q is concerned. Fµ is only
valid after the growing phase of the acoustics. In fact, at t = 0 s the introduction of the stability mode
ω = 40.409 − 9.164i leads to a fast growing and to a slow damping (due to dissipation) of an acoustic dis-
tribution. Fig. 6(a) shows the expected good agreement. In fact, sensor 21 and 22 have the same x location
and there is no radial dependance on the acoustic pressure fluctuation. One can note that the combination
of acoustic modes is almost harmonic, which confirms the linear behaviour of the perturbations in this DNS
calculation.
Now, the Am coefficients of the combination are used to calculate the acoustic velocity fluctuations. Com-
parisons between sux

ac and the linear combination of acoustic modes are shown on Figs. 7(a), 7(b) and, 7(c).
Once again, because of the viscous dissipation, the function Fµ is used to describ the envelop of the signals
(the initial amplitude is adjusted to match the numerical results for sux

ac . One can see that the coefficients
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Figure 6. Case 1. Fig. 6(a) presents the comparison between the signal sp
ac (blue line) and the combination of
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red and stands for the envelope of the combination. The line Fig. 6(b) shows the values Am of the coefficients
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Figure 7. Case 1. Comparisons between the signals sux
ac of three sensors and the combination of the 100 first

acoustic modes given by the coefficients Am. The envelope of the theoretical acoustic signals is related to the
function Fµ.

Am allow to build the combination of acoustic modes which is exhibited by the DNS calculation. This proves
the relevance of the approximation of the acoustic modes in a pipe for such a flow found by Majdalani et al..

As a conlcusion for this case where Xe = 8R0 and ω = 40.409 − 9.164i it appears that the adopted
strategy consisting in introducing a stability mode allows to confirms the values ωr and ωi found out by
the linear stability analysis. However, even if it works for a particular mode, it has to be proved that when
the length Xe is changed the values are changed, espacially ωi. Moreover the introduction of the mode
ω = 40.409 − 9.164i has lead to to the development of a harmonic distribution os acoustic modes. These
modes are well predicted by the analytical solution of Majdalani et al..
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B. Case 2

Here the considered mode is ω = 40.367 − 7.302i for a pipe length Xe = 10R0. This mode is the mode
ω = 40.409 − 9.164i which has moved to ω = 40.367 − 7.302i when Xe has changed from Xe = 8R0

to Xe = 10R0, see Fig. 1. As in the previous case, only the real part (ûx)r and (ûr)r of the mode
ω = 40.367 − 7.302i are introduced at t = 0 s. Of course, this leads to the excitation of the acoustics.
The least square method is used in this case too to calculate the combination of acoustic modes from a
pressure signal. The function Fµ is still used with a new initial amplitude value to described the viscous
dissipation.
Figs. 8(a), 8(b), 8(c) and 8(d) show the whole set of comparisons between signals and theoretical evolutions
for sensor 94. The excellent agreement observed on all these figures indicate that the analysis we have done
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Figure 8. Case 2. The signals are all coming from sensor 94 located at (x, r) = (8R0 , 0, 809R0) = (0, 24 m, 0, 0243 m).
Figs 8(a) and 8(c) present comparisons between signals sux

fluc and sur
fluc and their respectives theoretical evolu-

tions sux
th and sur

th . Figs 8(b) and 8(d) show comparisons between signals sp
ac and sux

ac and a combination of 100
acoustic modes calculated from a pression signal picked in the section x = R0 = 0, 03 m.

is relevant. In particular, Fig. 8(a) shows that the values ωr and ωi given by the stability analysis are
recovered by the DNS calculation. Thus, the evolution of the temporal growth rate ωi with respect to Xe is
not caused by the numerical procedure used to compute the eigenvalues of the stability problem. However,
this evolution can be related to the truncature in the sense that cutting the domain in Xe means neglecting
the flow outside the domain for x > Xe. Until now, there is no physical explanation to the dependance of
ωi with respect to Xe.
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C. Case 3

The mode ω = 40.409− 9.164i calculated for Xe = 8R0 which moves to ω = 40.367− 7.302i for Xe = 10R0,
has a frequency f = 214 Hz. This frequency is far from the first acoustic mode one fac =

c

2πR0
k1 =

c

4Xe
.

One finds fac = 363 Hz for Xe = 8R0 and fac = 291 Hz for Xe = 10R0. To force the expected coupling
between the acoustics and the intrinsic instabilities, it is interesting to consider a stability mode which
frequency is close to an acoustic mode one.
Let consider the mode ω = 68.679 − 7.594i calculated for Xe = 8R0. Its frequency, f = 364 Hz, is almost
equal to the first acoustic mode one fac = 363 Hz. At t = 0 s this mode is introduced in the flow and the
DNS calculation is started. Fig. 9(a) shows that the signal sur

fluc does not match the theoretical evolution
given by (2). In fact, Fig. 9(b) where the FFT b of signal sur

fluc is plotted, shows that the main amplified
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Figure 9. Case 3. Fig. 9(a) gives the comparison between the signal sur
fluc and the theoretical evolution for

sensor 4. Fig. 9(b) shows the result of the FFT for this signal sur
fluc.

frequency is about f = 335 Hz. This suggests that the stability mode ω = 62.787− 7.389i, which frequency
is f = 333 Hz, interferes in the computation. It seems weird to note that the mode ω = 62.787− 7.389i may
be excited since its frequency is farther to the first acoustic mode one than the frequency of the introduced
mode ω = 68.679− 7.594i.
In order to find the modal combination of stability modes which composes the signals sur

fluc, a spatial
decomposition is performed at each time. The signal of each sensor is believed to be made of a combination
of the two stability modes ω = 68.679 − 7.594i and ω = 62.787 − 7.389i respectively determined by the
complex amplitude coefficients A68 and A62 :

sur

fluc = A62
r

(
û62

r

)
r
+A62

i

(
û62

r

)
i
+A68

r

(
û68

r

)
r
+A68

i

(
û68

r

)
i

(6)

Using the least square method, the coefficients A62 and A68 are calculated at each time from the whole set
of the sensor signals sur

fluc. Finally, one gets two amplitude coefficients A62 and A68 depending on the time
t.
Once these coefficients are known, we have to see if the combination of the two stability modes matches the
signal sux

fluc. To do so, the acoustic parts of signals sux

fluc must be extracted. Once again the combination
of acoustic modes is calculated from a signal sp

fluc, assumed to be only composed by the acoustics. Thanks
to the coefficients Am of the 100 first acoustic modes and the function Fµ, the signals sux

ac are theoretically
known.
Using the modal decomposition A62 and A68, one can have access to the part of the signals due to the
stability modes, noted so far sux

th . Then it is interesting to compare sux

fluc−s
ux

th to the theoretical evolution of
acoustic modes given by sux

ac . Figs. 10(a), 10(b) and 10(c) give such comparisons for three distinct sensors.
The good agreements prove that the modal decomposition corresponds to the intrinsic instabilities part of

bFFT of such signals are difficult to perform because the sampling frequency is very high compared to the amplified
frequencies. In practice a periodogram method is used to get the frequency signature of these signals.
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Figure 10. Case 3. Comparison between the signals sux
fluc − sux

th and the theoretical acoustic evolution sux
ac for

three sensors.

the signal sux

fluc.
To go further in the analysis, it is intersting to plot the amplitude functions |A62| and |A68| and the respectives

phase functions ψ62 = arctan
(
A62

r

A62
i

)
= arg(A62) [2π] and ψ68 = arctan

(
A68

r

A68
i

)
= arg(A68) [2π]. If the

DNS calculation had exhibited purely modal evolution the amplitude functions |A62| and |A68| would have
match the theoretical evolutions given by eν62t and eν68t. Similarly, the phase functions ψ62 and ψ68 would
have follow the theoretical evolutions 2πf62t [2π] and 2πf68t [2π]. On Figs. 11(a), 11(b) and 11(c) the
comparisons of |A62|, |A68|, ψ62 and ψ68 with their respectives modal evolutions are shown. Through all
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Figure 11. Case 3. Fig. 11(a) show the evolution of the amplitude of the two modes ω = 62.787 − 7.389i (red

lines) and ω = 68.679−7.594i (blue lines). These amplitudes are compared to 10eν62t and 0, 01A0 ‖
`
û68

r

´
r
‖∞ eν68t.

Figs. 11(b) and 11(c) give the phase functions ψ62 and ψ68 (blue lines) compared to the theoretical evolution
2πf62t [2π] and 2πf68t [2π] (red lines).

these figures one can see that the introduction of mode ω = 68.679 − 7.594i has led to the development of
mode ω = 62.787− 7.389i. Rapidly, the mode ω = 62.787− 7.389i becomes dominating in the computation
and it looks like it oscillates around a modal evolution. Contrary to what was expected, i.e. a direct
interaction between the stability mode ω = 68.679−7.594i and the first acoustic mode, this DNS calculation
exhibits a coupling mechanism between two stability modes. This is all the more strange since the mode
ω = 62.787− 7.389i is farther to the acoustic mode than the mode ω = 68.679− 7.594i. It is quite hard to
explain the reasons which have led to this observation.
The very important fact illustrated by this case, is that a stability mode could merge into the flow without
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being artificially introduced in it. The previous analysis has shown that the mode ω = 62.787 − 7.389i has
naturally merge into the flow because of the proximity of the frequencies of mode ω = 68.679 − 7.594i and
of the first acoustic mode.

V. Conclusion

In this paper the use of DNS calculations has given a new insight on the linear stability analysis results.
In fact, it has been proved that the eigenvalues given by the stability results are recovered when computing
the unsteady motion of an isolated mode. A special attention has been paid on the dependance of ωi with
respect to Xe. The temporal growth rate rules the stable or unstable behaviour of these modes. As ωi is
getting closer to 0 when Xe is growing, one can imagine that for a sufficiently large value of Xe, ωi will
become positive. This would mean that the mode will be unstable. But it only happens for Xe/R > 16
and it has been proved in cold gaz experiments that the flow is turbulent for Xe/R > 13. Since the flow is
turbulent the linear stability analysis is not valid any more. Non linear effect are believed to act before the
modes became unstable. In fact, many comparisons with cold gaz1 and hot gaz2 experiments have proved the
relevance of the stability analysis which exhibit temporally stable modes. The stable nature of the intrinsic
instabilities has led to a coherent scenario for the thrust oscillations arising.
In addition to the confirmation of the stability results, these DNS calculations have emphasized the quality
of the analytical solution for the acoustics of the Taylor-Culick flow found by Majdalani et al.. Moreover, it
has been shown that the proximity of the frequencies of a stability mode and of acoustic modes could lead to
the merging of other stability modes. Other DNS computations made with unsteady injection velocity have
highlighted the existence of a coupling between the acoustics and stability modes. For unsteady injection

velocity cases, the frequency of one mode f =
Vinj

2πR
ωr becomes a function of the time t and can cross the

one of an acoustic mode fac. Thus we reproduce what happens in live motors where the coupling mechanism
between acoustics and intrinsic instabilities is believed to be responsible of the merging of the frequency
paths.1
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