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Critical interaction of a shock wave with an acoustic wave
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The interaction of linear waves with normal or oblique shock waves has been studied by Moore
@NACA Report No. 1165~1954!#, Ribner@AIAA J. 23 ~1984!#, and McKenzie and Westphal@Phys.
Fluids 11, 2350 ~1968!# by writing the fluctuating quantities as normal modes. These different
studies have shown that downstream of the shock exists a critical angle of the incident acoustic
waves where the reflection coefficient is equal to 1. The purposes of this paper are first to point out
that this critical angle may appear as a singularity in the linearized Euler equations, and second to
show that this problem can actually be removed if the perturbation is no longer assumed to be a
normal mode but has a mathematical form which is strictly deduced from the mathematical nature
of the linearized Euler equations. This analysis is then applied to the shock wave oscillations
occurring on a wing profile and in a nozzle. Despite many simplifications, good results are obtained
in comparison with the available experimental data. ©2001 American Institute of Physics.
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I. INTRODUCTION

Most of the applications in fluid dynamics involve un
steady flows. This is also true when a strong shock is pre
in the flow separating a supersonic flow from a subsonic o
In such cases, the unsteady behavior is usually not wis
and must be either eliminated or at least limited~in ampli-
tude!. Such undesirable oscillations occur under some co
tions for flows in a rocket motor and on transonic airfoils a
may lead to the well-known buffeting problem.

In the field of space engines, with the development
large rocket motors, unsteady transverse forces not envis
before have been observed for ten years. This problem,
served in several engines, has been called ‘‘side loads’’ e
since. Owing to their randomness, these side loads may
serious consequences, such as nozzle deformations an
gine movements. Moreover, as the perturbation is unste
in module and in direction, the resulting constraints may
amplified by dynamic effects. The lateral forces can be t
a limiting factor in the structural design of the nozzle: th
impose thicker nozzles, then heavier ones, or shorter noz
then less efficient. Both cases lead to a reduction in the p
load. The exact cause of this symmetry loss is, howe
badly known today; several assumptions have been prop
but without any consensus.

In the field of aircraft, a similar phenomenon occu
above the wing when the plane is close to its flight envelo
limit: the buffeting phenomenon. It appears when the an
of attack or the Mach number increases. Although the b

a!Electronic mail: jcrobine@onecert.fr
b!Electronic mail: casalis@onecert.fr
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feting is characterized by the vibration of the aircraft stru
ture, its origin seems to be purely aerodynamic. In particu
it may result from an unsteady separation located on
airfoil, the vibrations of the structure being produced by
coupling effect. This phenomenon can appear in all flig
regimes, it is accentuated for transonic flows by the sh
wave oscillations. This phenomenon is not critical for t
aircraft but it limits the flight envelope of the civil aircraft
indeed the maximum level of buffeting is fixed by the reg
lation of the civil aviation.

Although these phenomena area priori very different
from the industrial point of view, the involved physica
mechanisms seem to be comparable. However, in both ca
the actual flow is somehow complex: presence of a nonz
pressure gradient, a shock wave, a large separation bu
and unsteadiness. A complete computation does not see
be realistic nowadays and in addition even if it was feasib
it would only describe the flow, whereas our goal is to u
derstand the origin of the unsteadiness.

A large amount of work has been done and published
the last 50 years with approaches that are mainly numer
or experimental. Recently, a linearized numerical approa
see Ref. 1, provided satisfactory results in comparison w
the available experiment, but once more, it does not re
help to understand the relevant mechanism.

In our opinion, it seems necessary to come back
simple configurations even if they are not fully realistic. T
equations can be then simplified, the resolution may be t
analytical, leading accordingly to a possible identification
the role of the different involved parameters. Our starti
point is the study of the linear interaction of an acous
7 © 2001 American Institute of Physics
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1048 Phys. Fluids, Vol. 13, No. 4, April 2001 J.-C. Robinet and G. Casalis
wave with a shock wave. It has been treated by several
thors, in particular Moore,2 Ribner,3 McKenzie and
Westphal,4 and Maheshet al.5

The general objectives of this paper are first to study
linear interaction of a shock wave with an acoustic pertur
tion and second to show that the shock oscillations in
nozzle or on an airfoil can be surprisingly and simply e
plained by the shock wave–acoustic wave interaction the
Basically, two cases depending on the incident angle of
acoustic perturbation appear. Below the so-called crit
angle, classical results are briefly recollected. At the criti
angle, the linear interaction theory is completely revisited

The present paper is divided in two main parts. The fi
part deals with the theoretical description of the propo
approach. After the chosen assumptions~Sec. II A!, the the-
oretical model is described in Secs. II B–II H. In particula
Sec. II E shows that there are singular values of the tra
verse wave numberky for which the linearized Euler equa
tions exhibit non-normal solutions. Section II G briefly pr
sents the results when the wave numberky is different from
the singular values, this case has been already treate
McKenzie and Westphal.4 Section II H, devoted to the par
ticular case of the singular values of the wave numberky ,
contains our original contribution. The present theory is th
applied in the second part to the practical cases of the sh
wave oscillation in a nozzle and on an airfoil wing. It
shown that the singular value ofky seems to play an impor
tant role.

II. THEORETICAL PART

A. Study context: Presentation of the problem and
assumptions

We consider a two-dimensional unsteady flow with
straight shock wave. Thex coordinate coincides with the
normal of the shock and they coordinate is perpendicular t
it. The undisturbed shock front is located atx50 and the
flow moves from thex,0 region to thex.0 region. The
upstream quantities~supersonic zone! are denoted by sub
script 0 and the downstream quantities~subsonic zone! by
subscript 1. The flow is considered as a perfect, inviscid g
The assumptions of the present problem are the follow
ones:

• The shock is supposed to be sufficiently strong so that
boundary layer downstream of the shock is separated.
then assumed that this large separation bubble is a so
of fluctuations, the maximum being located at the reatta
ment point, see Ref. 6.

• The radiated waves and the resulting perturbations are
posed to have small amplitudes. The resulting shock
placement is also supposed to be small.

• The radiated waves are supposed to be plane waves,
crests perpendicular tok.

• In order to calculate explicitly the shock displacement a
the oscillation frequencyv, the value of the pressure fluc
tuation is imposed by assuming that the reattachment p
is an antinode of pressure fluctuation. This is a crude
sumption.
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• The supersonic zone is supposed to be free of any pe
bation.

Figure 1 presents the physics of the considered problem

B. Governing equations and boundary conditions

The general equations for the instantaneous flow are
Euler equations, the energy equation, written for the entro
and the equation of state for a perfect gas:

]r

]t
1“•~rU!50, ~1a!

r
]U

]t
1r~U•“ !U52“P, ~1b!

]S

]t
1~U•“ !S50, ~1c!

S5Cv lnS P

rgD , ~1d!

whereU5(U,V) t represents the two mean velocity comp
nents. In addition to these equations, the instantane
Rankine–Hugoniot shock relations are imposed at the ins
taneous shock position~see Sec. II D!. The governing equa-
tions and the Rankine–Hugoniot relations form the physi
system to be solved. The boundary condition of this probl
is a given fluctuation radiated from a given point. In th
considered applications, Sec. III, the boundary condition
plane acoustic wave radiated from the reattachment poin
the separation bubble.

C. Mathematical form of the perturbation

The present theory is based on the classical small pe
bations technique, the instantaneous flow being the supe
sition of a known mean flow and unknown fluctuations. A
the physical quantitiesq ~for example, velocity components
pressure, etc.! are thus decomposed into a mean value an
fluctuating one:

q~x,y,t !5q̄1qf~x,y,t !. ~2!

The mean valueq̄ is assumed to be a constant in the~x, y!
plane on each side of the shock. This implies that in fact t

FIG. 1. Physics of the problem.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1049Phys. Fluids, Vol. 13, No. 4, April 2001 Critical interaction of a shock wave
decompositions are written: one upstream of the shock,
other one downstream. According to the constant form of
mean flow, the perturbation can be described as a nor
mode with respect to the different variablesy,t:

q~x,y,t !5q̄1q̃~x!ei ~kyy2vt !1c.c., ~3!

whereq̃(x) is the amplitude of the fluctuations,ky is a trans-
verse wave number withkyPR, and c.c. denotes the com
plex conjugate. The circular frequencyv is a real number, it
represents the frequency of the phenomenon. The mean
being constant on both sides shock,q̃(x) can be written in
the normal mode formeikxx, see Sec. II E. This more gener
expression is used for the treatment of the shock relations
the following section,ei (kyy2vt) is notedE.

D. Linearized Rankine–Hugoniot relations

The same small perturbation technique~2! is used for the
shock equations~for more details see Ref. 7!. The perturbed
position of the shock is written as

x5 f ~y,t !5 x̄c1XE1c.c., ~4!

wherex̄c is the mean shock position~here,x̄c50 due to the
choice of the coordinate system! andX represents the shoc
oscillation amplitude. The latter is assumed to be a sm
~complex! quantity. The Rankine–Hugoniot relations a
then linearized by performing a first-order Taylor expans
with respect to the shock displacement amplitudeX. Each
quantity,qj , j 50,1 is the sum of the mean quantity and t
fluctuating quantity, both being evaluated just upstreamj
50) or downstream (j 51) of the perturbed shock position
qj is expressed as

qj~ x̄c1XE,y,t !5q̄ j~ x̄c1XE!1qj f
~ x̄c1XE,y,t !,

j 50,1. ~5!

As the coordinate system is such thatx̄c50, q1 and q0 are
expanded into

qj~XE,y,t !5q̄ j~0!1q̆ j~0!E for j 50,1, ~6!

where q̆(0) is the amplitude of the fluctuation at the me
shock position. After some calculations, the linearized sh
relations lead to an algebraic system of equations:

A1Z1~0!5jX1A0Z0~0!, ~7!

where Z j (0) ~for j 50,1) stands for the fluctuating ampl
tudes vector (p̆,ŭ,v̆,s̆) calculated at the mean shock pos
tion. j is a known complex vector andA0 ,A1 are fourth-
order known complex matrices. For a one-dimensio
constant flow on both sides of the shock, the general line
ized Rankine–Hugoniot, Eq.~7!, can be simplified into
Downloaded 28 May 2001 to 144.204.65.14. Redistribution subject to A
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c̄2
p̆G1@ r̄ŭ#2

r̄Ū

Cp

@ s̆#2 ivr̄1

@Ū#

Ū0

X50,

F S 11
Ū2

c̄2 D p̆G12r̄Ū@ ŭ#2F r̄Ū2

Cp
s̆G50,

~8!F1

r̄
p̆G1@Ūŭ#1F c̄2

Cp~g21!
s̆G1 iv@Ū#X50,

@ v̆#1 iky@Ū#X50,

where@q#5(q02q1) indicates the jump relation at the mea
shock location of the quantityq.

E. Linearized Euler equations

The decomposition~3! is introduced into Eqs.~1a!–~1d!.
The resulting equations are then simplified, first by taki
into account that the mean quantities satisfy the equat
and second by assuming that the fluctuating quantities
small, so that these equations can be linearized with res
to the disturbance. The resulting equations constitute an
dinary differential equations system with respect tox and
with constant coefficients. Thus, the solution can be sou
under an exponentialx dependence:q̃(x)5q̂eikxx, wherekx

is the longitudinal wave number downstream of the shock
is appropriate to specify thatq̆ represents the global fluctua
tion whereasq̂ ~introduced in the previous section! repre-
sents the amplitude function associated with the fluctua
written in the normal modes form. Finally, the linearize
Euler equations become a homogeneous algebraic syste

~M2kxN!Z50, ~9!

wherekx appears as the eigenvalue of the problem.Z stands
for ( p̂,û,v̂,ŝ) andM andN are (434) matrices which de-
pend on the mean flow and of the coefficientsv andky . For
the explicit form of matricesM andN, see Ref. 8.

A nonzero solution in Eq.~9! exists if det(M2kxN)
50. This condition provides four different wave numbers

kx
~1!5

2vŪ12 c̄1V

c̄1
22Ū1

2
, kx

~2!5
2vŪ11 c̄1V

c̄1
22Ū1

2
,

kx
~3!5kx

~4!5
v

Ū1

, ~10!

whereV5@v22ky
2( c̄1

22Ū1
2)#1/2 and c̄15(grT̄1)1/2.

The corresponding eigenvectors are

V1,25@2 r̄1~Ū1kx
~1,2!2v!,kx

~1,2! ,ky,0# t,

V35@0,ky ,2kx
~3!,0# t, V45@0,0,0,1# t. ~11!

V j is the eigenvector downstream of the shock. These eig
vectors form a basis if the determinant of the matrixM v ,
whose columns are the four eigenvectorsV1 ,V2 ,V3 ,V4 , is
different from zero. A straightforward calculation leads to

detM vÞ0⇔vÞ$6 ikyŪ1 ,6ky~ c̄1
22Ū1

2!1/2%. ~12!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1050 Phys. Fluids, Vol. 13, No. 4, April 2001 J.-C. Robinet and G. Casalis
Physically, the relationv56 ikyŪ j implies that the second
acoustic mode has the same phase speed~wave number! as
the vorticity mode~see Ref. 7!. On the other hand,v5

6ky( c̄1
22Ū1

2)1/2, implies that the two acoustic modes coi
cide. However, the first relation may be disregarded beca
the circular frequencyv is required in the present study to b
real. It remains the second relation which will be extensiv
studied in Sec. II H. Let us assume now that condition~12! is
satisfied, so that the general solution of Eq.~9! can be written
as

qf5S (
j 51

4

CjV je
ikx

~ j !xD ei ~kyy2vt !. ~13!

The four coefficientsCj , j 51,...,4, are unknown integratio
constants downstream of the shock. They are related to
two acoustic waves (j 51,2), the vorticity wave (j 53), and
the entropy wave (j 54), respectively. Finally, the fluctuat
ing quantities are written as

p1 f
5~2C1r̄1~Ū1kx

~1!2v!eikx
~1!x

2C2r̄1~Ū1kx
~2!2v!eikx

~2!x!E,

u1 f
5~C1kx

~1!eikx
~1!x1C2kx

~2!eikx
~2!x1C3kye

ikx
~3!x!E,

~14!
v1 f

5~C1kye
ikx

~1!x1C2kye
ikx

~2!x2C3kx
~3!eikx

~3!x!E,

s1 f
5C4eikx

~4!xE.

Let us recall thatE5ei (kyy2vt). In this paper, only the cas
where the upstream fluctuating quantities are supposed t
zero is treated:q0 f

[0. See Ref. 8 for the general case.

F. Global problem resolution

At this stage, we suppose that the constantC1 is known,
this coefficient corresponds to the incident wave. Substi
ing expressions~14! at x50 into the shock relations~8!
leads to an algebraic system:

Gx5F, ~15!

where x5(C2 ,C3 ,C4 ,X) t is the unknown vector,G is a
fourth-order matrix, which depends onv andky and on the

FIG. 2. Drawing of the different considered angles.
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mean flow values, andF is a known source vector~see Ap-
pendix A!.

The resolution of the system~15! provides the ratio
Cj /C1 , j 52,3,4. These ratios determine the reflection a
generation coefficients of the different waves interact
with the shock as well as the amplitude of the shock d
placement.

The objective of this paper is not the systematic inve
gation of the shock wave response to a linear forcing
only the investigation of a particular configuration. Th
systematic study has been already achieved by Moo2

McKenzie and Westphal,4 Ribner,3,9 and Hardy and Atassi.10

We just focus on the case of an acoustic wave propaga
upstream in the subsonic zone and interacting with the sh
wave.

G. Downstream acoustic disturbance

Let us noteu i 1
and u r 1

the angles between the wav
vectors and thex direction for, respectively, the inciden
acoustic wave and the reflected acoustic wave:

u i15arctanS ky

kx
~1!D , u r15arctanS ky

kx
~2!D .

It is appropriate to recall thatkx
(1) is negative, the corre-

sponding wave propagates upstream, whereaskx
(2) is posi-

tive, the associated wave thus propagates downstream.
ure 2 shows a drawing of different considered angles. T
angle of the reflected wave is shown in Fig. 3 as function
u i 1

for different Mach numbersM̄0 . It can be observed tha
for each Mach number, a threshold valueu i c

of u i 1
exists.

For u i 1
,u i c

, the reflected acoustic wave propagates dow
stream. Beyond this critical angleu1c

, the acoustic wave
cannot be propagated without damping or amplification
cause the longitudinal wave numberskx

(1,2) become complex
numbers. Moreover, there is an angleu i p

beyond whichuu r u
is larger thanp/2. This angle corresponds to the case
which the reflected vector wave is directed to the shock. T
calculation of the phase velocity and the group velocity
the incident wave and the reflected wave permits us to de

FIG. 3. Angle of the reflected acoustic waveu1r
vs u1i

.

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1051Phys. Fluids, Vol. 13, No. 4, April 2001 Critical interaction of a shock wave
mine the behavior of the acoustic waves according to
incident angle. These velocities are defined as follows:

qw5
v

iki2 k, qg5
]v

]k
5 c̄

k

iki 1Ū, ~16!

for the phase velocity and the group velocity, respective
Figures 4 and 5, respectively, show the evolution of
streamwise component of the group velocity and the stre
wise component of the phase velocity versus the incid
angleu i . Figures 4 and 5 show that the longitudinal pha
and the longitudinal group velocity of the incident acous
wave are always negative. For the reflected acoustic w
the longitudinal phase velocity is positive ifu i,u i p

and
negative ifu i>u i p

, whereas the longitudinal group velocit
is always positive. However, the latter is zero for the tw
waves whenu i5u i c

~the transverse group velocity is diffe
ent from zero at this angle!. In conclusion, whenu i p

,u i

,u i c
, although the wave number is directed to the shock,

FIG. 4. Longitudinal group velocityqg for the incident and reflected acous
tic waves vsu i .
ch
th
t

th
ti

s
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reflected acoustic wave propagates from upstream to do
stream. Whenu i5u i c

, the incident and the reflected acous
wave cannot be distinguished. This angleu i c

is given by

u i c
5arcos (M̄ ) and corresponds to the critical transver

wave numberky
c5v/Ac̄22Ū2. Figure 6 provides a sche

matic representation of the cone for the admissible~real!
propagation directions of the acoustic waves. For more
tails, see Appendix B. This critical mode corresponds to
value ofv which has been excluded, see relation~12! in Sec.
II E, a special analysis is thus necessary, see Sec. II H.
fore detailing this case, let us look at the evolution of t
reflection coefficient to incident acoustic wave versus
incident angle whenu i,u i c

:

p̃1
~r !

p̃1
~ i !

5S kx
~2!Ū12v

kx
~1!Ū12v

D C2

C1

.

After some calculations, the pressure ratio can be written

FIG. 5. Longitudinal phase velocity for the incident and reflected acou
wavesqw vs u i .
p̃1
~r !

p̃1
~ i !

52S kx
~2!Ū12v

kx
~1!Ū12v

D F 2
Ū1

Ū0

vS ky
21

v2

Ū1
2D 2S v2

Ū1Ū0

1ky
2D ~v2Ū1kx

~1!!S M̄0
221

M̄0
2 D

2
Ū1

Ū0

vS ky
21

v2

Ū1
2D 2S v2

Ū1Ū0

1ky
2D ~v2Ū1kx

~2!!S M̄0
221

M̄0
2 D G . ~17!
d
is

ing
e
and
the
Figure 7 shows this evolution for different upstream Ma
numbers. This pressure ratio is always lower than 1,
shock can be thus considered as stable in the sense tha
amplitude of the reflected wave is always lower than
amplitude of the incident wave. However, this pressure ra
strongly depends on the incident angle. There are angle
which the pressure ratio is zero. Whenu i→u i c

, the pressure
ratio tends to be maximal and equal to 1~in absolute value!.
e
the
e
o
for

In addition, the work of McKenzie and Westphal4 and
Navier–Stokes computations of Zang and Bushnell11 have
shown that in the vicinity of this critical angle, the reflecte
coefficient of an acoustic wave is close to 1, a result which
in agreement with the previous computations. By extrapol
the results foru i→u i c

, it can be summarized that: th
streamwise component of the group velocity tends to 0
the reflected wave amplitude becomes identical to that of
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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incoming one, the shock response becomes marginal. H
ever, as mentioned above, the previous analysis must be
formed again from Sec. II E by writing the disturbance in
adapted basis foru i5u i c

. The shock treatment does not ne
to be analyzed again, because the fluctuation formq̃(0) is
completely general, independent of its mathematical exp
sion.

H. Study of critical angle

Equation~15! has been obtained forky,v/b, with b

5Ac̄1
22Ū1

2, or for u i,u i c
. Let us look at the caseky

5v/b, this value corresponds to a value ofky which has
been excluded and for which the four eigenvectors~11! do
not form a basis~12!.

For ky5v/b, the eigenvalues of Eq.~9! are given by

FIG. 6. Diagram representing the critical angle.

FIG. 7. Angular dependence of the reflection coefficient for acoustic wa
for different upstream Mach numbers.
Downloaded 28 May 2001 to 144.204.65.14. Redistribution subject to A
w-
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kx
~1!5kx

~2!52
vŪ1

b2
and kx

~3!5kx
~4!5

v

Ū1

. ~18!

The eigenspaceEk
x
(3)5Ker (M2kx

(3)N)2 associated with the

eigenvaluekx
(3) is of dimension 2 and is generated by

Vc3
5S 0,l ,2

b

Ū1

l ,0D t

and Vc4
5~0,0,0,k! t,

; l ,kÞ0.

Where subscript ‘‘c’’ corresponds to the critical angle. Th
eigenspaceEk

x
(1)5Ker (M2kx

(1)N)2 associated with the ei

genvaluekx
(1) is of dimension 1 only, and is, hence, gene

ated by one vectorVc1
. Thus, there is no basis in which th

matrix N21M is diagonal (N21 is always invertible!. The
last vectorVc2

is sought such that the matrixN21M is in the
Jordan form, i.e.,

~M2kx
~1!N!Vc2

5NVc1
.

Finally,

Vc1
5S 2

r̄1c̄1
2

Ū1

m,m,2
b

Ū
m,0D t

,

Vc2
5S 2

r̄1c̄1
2

Ū1
S n1

b4

vŪ1c̄1
2

mD ,

n,2
b

vŪ1

~nvŪ11mb2!,0D t

, ;m,nÞ0.

In this basis, the matrixN21M is given by

J51
2

vŪ1

b2
1 0 0

0 2
vŪ1

b2
0 0

0 0
v

Ū1

0

0 0 0
v

Ū1

2 . ~19!

The primitive fluctuating quantities (pc ,uc ,vc ,sc) can be
found by

Z5PeixJxc ,

whereP is the basis transformation matrix, the columns
which are the eigenvectors of matrixN21M and xc is the
vector (Cc1

,Cc2
,Cc3

,Cc4
) t formed with the integration con

stants. Ultimately, the general solution of Eq.~9! for the
modeky5v/b is
s

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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qcf
5@~Cc1

1 ixCc2
!Vc1

eikx
~1!x1Cc2

Vc2
eikx

~1!x

1Cc3
Vc3

eikx
~3!x1Cc4

Vc4
eikx

~3!x#E. ~20!

The critical mode thus exhibits an algebraic growth, wh
comes from the nondiagonal structure of the reduced ma
J. Expression~20! for x50 is then introduced into the lin
earized relations of Rankine–Hugoniot~8!. The following
algebraic system is obtained:

Gcxc5Fc . ~21!

Gc is a fourth-order matrix, which depends onv and on the
mean flow andFc is the source vector. The determinant
Gc is always different from zero, thusxc5Gc

21Fc is always
defined. The explicit form of the matrixGc , the vectorFc ,
the analytical expression of the coefficientCcj

, j 51,...,4,
and the general form of the solutionqcf

are reported in Ap-
pendix C. We are thus able to have relations similar to
~17! but applied to the critical case.

III. APPLICATIONS

Section II G proves that if there is an emission of aco
tic waves in all the admissible directions from a source
cated downstream of the shock, the shock wave respo
preferentially to the incident acoustic waves with directi
close tou i c

~see Fig. 7!.
Under certain conditions, the shock wave in the sup

sonic flow may exhibit oscillations. As described in the I
troduction, this may occur in supersonic diffusers and
transonic airfoils. The next two subsections are devoted
description of examples for each of the two cases.

A. Self-sustained shock oscillations in transonic
diffuser flow

1. Diffuser geometry

The major experimental contribution on self-sustain
shock oscillations in the diffuser has been achieved by
McDonnell Douglas team headed by Sajben.12–14One of the
diffusers used in the experiment is asymmetric with a
bottom wall and a converging–diverging channel. This d
fuser is equipped with many suction slots on the verti
walls, so that the flow can be considered two-dimensiona
least in the middle section between the two lateral walls
the channel. Figure 8 gives a sketch of the experime
setup. The diffuser length corresponds to the distancel be-
tween the throat and the exhaust section and is scaled

FIG. 8. Sajben and co-workers~see Refs. 12, 13, and 14! diffuser model.
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the heighth at the throat. In this paper, only the diffuse
with l /h<13, is studied with the proposed approach.

2. General descriptions

In the considered configuration, the fluid accelera
from a subsonic speed to a supersonic speed through a s
throat, and is abruptly decelerated by a shock wave loca
downstream of the throat. The flow is exhausted directly
the ambient air so that the boundary conditions at the
cross section are closely characterized by a spatially
temporally constant static pressure. The flow conditions
then mainly characterized by the ratio of the static pressur
the exit section to the total pressure at the inlet:Rp

5pe /pt . This ratio determines, among other properties,
shock strength and the Mach numberM0 ahead of the shock
The flow patterns obtained with this diffuser depend on
Mach number. In Sajben’s experiment, shock-induced se
ration occurs for Mach numbersM0 greater than 1.3 and, in
this case, spontaneous self-oscillations have been obse
These oscillations consist of a shock oscillating motion
gether with the occurrence of fluctuations downstream of
shock. In all cases, no oscillation has been observed in
supersonic zone. The following results are limited toRp

50.72 (M051.34).

3. Experimental results

Among Sajben’s experimental results, the shock mot
power spectrum is of particular interest. This spectrum12 is
represented in Fig. 9. It shows that the most sensitive
quencies, for a diffuser lengthl /h514.4, are close to 200
Hz. Figure 10 shows the experimental results for the isoŪ

FIG. 9. Shock motion power spectrum in a nozzle, experiment.

FIG. 10. Ū contours (m/s), Sajben’s experiment.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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contours. On the upper wall, the boundary layer presen
large separation bubble. The reattachment point of the up
boundary layer is located atx/h'5. As explained before
this point is supposed to be an acoustic source of pl
waves.

4. Simple modeling

In this paper, the perturbed flow is supposedly invisc
the present approach is thus limited to the core region wh
the viscous effects can be neglected. The mean flow is
sumed to be constant on both sides of the shock. Altho
this assumption is not true even at first approximation in
boundary layers and just downstream of the shock, we
show that the knowledge of the upstream Mach numbe
the shock, the jump relations through shock, and purely g
metrical data are sufficient to determine the shock freque
of oscillations and qualitatively some characteristics of
perturbed flow.

The reattachment point emits acoustic waves in all
directions, in particular, with angles close to the critic
angleu i c

. In Sec. II H, the analytical expression of the flu
tuating pressure foru i5u i c

has been obtained. All fluctuat
ing quantities are proportional to the shock oscillation am
tude X, which cannot be determined within the line
analysis. In order to determine the amplitude of the differ
fluctuating quantities, the fluctuating pressure, for exam
must be known somewhere in the flow~normalization!. The
circular frequencyv also is not determined. To determine
a relation between the shock and the source of the aco
waves~the reattachment point! must be given. The relationa
priori chosen consists to suppose that the reattachment p
is an extremum for the fluctuating pressure, i.e., an antin
of pressure:

Re@pf~xr ,yr ,t !#,

is a pressure antinode if

]

]x H cosFup~x!1vS 2
Ū1x

b2 1
y

b
D G J

~xr ,yr !

50,

and

]

]y H cosFup~x!1vS 2
Ū1x

b2 1
y

b
D G J

~xr ,yr !

50, ~22!

with (xr ,yr) the coordinates of the reattachment point. Af
some calculations, relations~22! give three possible solu
tions:

v50, ~23a!

Im@ f ~ q̄!#

xrg~ q̄!
5v tanF j p2

v

b
S 2

Ū1xr

b
1yr D G , ; j [Z,

~23b!

v252
b2

Ū1@g~ q̄!#2
F Im@ f ~ q̄!#g~ q̄!1

Ū1

b2
@g~ q̄!#2G,0,

;M̄0.1, ~23c!
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with f and g given by v f (q̄)5Np and v2g(q̄)5Mp , see
Appendix C. The only acceptable solution is the relati
~23b!. It remains to perform a numerical estimation. The u
stream mean flow is chosen such that the upstream M
number and the shock position are realistic~resulting from a
stationary Navier–Stokes calculation!, the downstream mean
flow is calculated through Rankine–Hugoniot relations.
this case, the upstream Mach number is equal to 1.3.
critical angle corresponding to this Mach number is equa
u i c

5arccos(M̄1), i.e., u i c
538° in the present case. In th

Cartesian coordinates systemOxy fixed on the mean shock
the mean reattachment point coordinates (xr ,yr) are ~0.12,
0.05!, where the origin iny is on the lower wall. The relation
~23b! permits us to find a frequencyv/(2p) equal to 191.2
Hz ( j 51). The experimental results of Sajben~Fig. 9! ex-
hibit a well-defined peak close to 210 Hz. The result is n
bad, taking into account the numerous assumptions for
approach.

Many theoretical1 and numerical studies8 have been per-
formed for the stability analysis of a shock wave or the re
lution for the linearized Euler equations, both with the sm
perturbation technique with a mean flow close to the exp
mental one. All these studies confirm the present appro
for the value of the frequency. Among Sajben’s experimen
results, the amplitude and the phase of the pressure fluc
tion can be compared to our results. The results are il
trated in the Fig. 11. The results are qualitatively close to
experiment, the amplitude of the fluctuating pressure
roughly constant downstream of the shock and the ph
variation is increasing as in the experiment. Nevertheless,
existing differences are related to the assumptions on
mean flow. They are significant in particular immediate
downstream of the shock where the flow is strongly dep
dent onx, and near the wall, whereas it is, respectively,
sumed to be constant and negligible in the present theory
fact, if the frequency is controlled mainly by a geometric
aspect ~reattachment point-shock distance!, the boundary
layer close to the wall and the nonconstant zone just do
stream of the shock, are the weakly extended zone in c
parison with the total distance. The approximation of t
mean flow by a constant flow is thus quite valid at fir
approximation. For information, the amplitude and pha
evolution of the pressure fluctuation for nonconstant flow
deferred on Fig. 11~for more details, see Ref. 1!. The fast
evolution of the pressure fluctuation amplitude close to
shock, where the flow is strongly dependent onx, is qualita-
tively found.

B. Self-sustained oscillations on a wing of a
transonic airfoil

This section is devoted to a validation of the prese
approach for the shock oscillations inducing the buffeti
phenomenon.

1. Profile geometry and general descriptions

Two transonic airfoils are considered: the OAT15A-C
airfoil,6 with a chord ofc5200 mm and CAST 7/DOA1,15

with a chord ofc5100 mm. The flow on a transonic airfo
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 11. Nozzle oscillation, amplitude
and phase of fluctuating pressur
v/(2p)5200 Hz.
ar
o

ac
g
d
ea
m
g
o

io
t

ea
ov
ua
re
h
b

al
ve
c

ed

n-
he
of

r or
ith

wn-
80

e
ent

re-
ing
res-
f

T7
is characterized at the design point by the presence of a l
supersonic region on the upper surface ended by a sh
wave. Increasing the Mach number or the angle of att
beyond the design point leads to the development of stron
shocks which initially only thicken the upper surface boun
ary layer. However, depending on the severity of the r
adverse pressure gradients, a trailing edge separation
have already developed. A further increase in shock stren
causes the boundary layer to separate at the foot of the sh
Again, there may or may not be a trailing edge separat
Raising the angle of attack or the Mach number causes
shock-induced separation bubble to spread downstr
while, at the same time, rear separation, may slowly m
upstream. Joining together the two separated bubbles us
leads to the beginning of shock oscillations, a condition f
quently referred to as airfoil or wing buffet. In our approac
the fluctuations are supposed to be small, i.e., only the
ginning of buffeting is accessible to our approach.

2. Experimental results

For the airfoil CAST7/DOA1, the available experiment
results, which can be compared to our approach, are
few. At the free-stream conditions considered, i.e., a Ma
number ofM`50.77, an angle of attack ofac53°, and a
Reynolds number of Re563106 with the transition fixed at

FIG. 12. Spectrum of fluctuating pressure for the critical incidence, CAS
DOA 1 airfoil, experiment.
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9% chord, the determined shock oscillation isf 5140 Hz,
which is verified by the spectral density distribution depict
in Fig. 12.

For the airfoil OAT15A-CA, there are more experime
tal results, especially close to the buffeting threshold. T
buffeting appears by a very clear increase in the level
pressure fluctuations on the airfoil when the Mach numbe
the angle of incidence reaches a well-defined limit. W
regard to the incidence, this limit is reached forac52.94°.
Figure 13 shows the fluctuating pressure spectrum do
stream of the shock. The shock oscillations are close to
Hz, for a Mach number ofM`50.736. Figure 14 shows th
evolution of the experimental fluctuating pressure coeffici
as a function of the airfoil incidence.

3. Simple modeling

The theoretical approach is strictly identical to that p
viously employed. The reattachment point, here the trail
edge, is supposed to be an extremum for the fluctuating p
sure. The relation~23b! permits us to obtain the frequency o

/FIG. 13. Spectrum of fluctuating pressure for an incidence ofa52.94°, for
an abscissa:x/c50.5, OAT15A-200 airfoil, experiment.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the oscillation. These results, for the different studied p
files, are summarized in Table I. In Table I, one other airf
~OAT15A-150! is also presented. The OAT15A-150 airfo
belongs to the same family as airfoil OAT15A-CA but wi
a chordc5150 mm ~for more details, see Ref. 8!. Still, in
these cases, the present rough modeling permits us to fin
characteristic frequency of the oscillations. For t
OAT15A-CA airfoil, Figs. 15 and 16 illustrate the compar
son between the experimental and theoretical results for
streamwise evolution of the amplitude and the phase of
fluctuating pressure. Experimentally, the amplitude of
pressure fluctuation on the shock position is significant
cause the shock crosses the sensors. Downstream o
shock, the amplitude is nearly constant. The phase of
pressure fluctuation exhibits a variation of 135° between
mean shock position and 90% of the chord~the reference
phase being taken atx/c50.9). The evolution of this phas
indicates that the disturbance moves downstream. As in
case of the nozzle, the theoretical predictions are qua
tively close to experiment. The largest difference is close
the shock, where the mean flow is clearly not independen
x ~the assumptions of our modeling are thus not valid a
more!.

C. Comments

It remains to determine theoretically the oscillatio
threshold. One can reasonably suppose that the size o
separated zone plays a fundamental role. Indeed, accor
to our assumption, if the separation bubble is too small or
wide, the critical angle resulting from the point of separati
strikes the shock in a zone where its selectivity is n
guaranteed.1,8 In the nozzle case, if the separated zone is
large, the acoustic waves with a critical angle can ‘‘mis
the shock because they will interact with the boundary la
of the opposite wall. Thus, an optimal size of the separa
zone must exist so that the acoustic waves resulting from

FIG. 14. OAT15A-200 oscillation, evolution of pressure fluctuation vs
cident angle.
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activated zone with a critical angle can interact with t
shock in an optimal way. These assumptions need to
specified and checked, which will be the subject of futu
work.

IV. SUMMARY

The analytical methodology of the present work is bas
on the study of the interaction of the linear waves with
normal shock wave. The previous studies, Moore,2 and
McKenzie and Westphals,4 have shown that the reflectio
coefficient of an acoustic wave downstream of the shock
always lower than 1. However, a critical angle for the in
dent acoustic wave exists for which the reflection coeffici
is equal to 1. At this angle, the shock response is thus m
ginal. In this paper, this critical angle has been connecte
a linearized Euler equation singularity. This singularity co
responds to the case where the incident and the refle
acoustic waves coincide~same frequency, same vector num
ber wavek andu r52p2u i). From a mathematical point o
view, this singularity simply corresponds to the case of
crossing of two eigenvalues branches with, furthermore,
eigenspace of dimension 1 only. Hence, the linearized E
equation cannot be diagonalized so that the perturbation i
longer a sum of normal modes. The main characteristic
the perturbation is to exhibit an algebraic growth with r
spect tox, the x dependence is of the form: (ax1b)eikxxE.
Consequently, if there is in the flow an acoustic source em
ting waves in all the possible directions~for example, the
reattachment point of the separation bubble!, the shock wave
preferentially responds to the incident waves close to
critical angle. These results were applied to the case of
shock wave oscillation in a nozzle, then to an airfoil win

FIG. 15. Comparison between the measured amplitude of the fluctua
pressure for an incidence ofa52.94° and the theoretical one, upper sid
OAT15A-200 airfoil.
TABLE I. Data and results for different airfoils.

Re M` chord ~mm! ac f exp f theo (xr ,yr) u i c

OAT15A-CA 4.53106 0.736 200 2.94° 80 Hz 86.3 Hz ~0.08,0! 37.3°
OAT15A-150 63106 0.73 150 3.25° 100 Hz 105.3 Hz ~0.09,0! 37.1°
CAST7/DOA1 63106 0.77 100 3° 140 Hz 133.2 Hz ~0.05,0! 38.2°
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Indeed, in both cases there is a Mach number threshold
yond which the level of the unsteadinesses strongly
creases. This threshold generally corresponds to the e
tence of a massive separation bubble. The reattachment
or the trailing edge is assumed to be the center of str
unsteady activity. There are fluctuations which may arrive
the shock with an angle close to the critical angle. When
present theory is applied, by supposing that the emiss
point of the fluctuations is a pressure extremum, a relatio

FIG. 16. Comparison between the measured phase of the fluctuating
sure for an incidence ofa52.94° and the theoretical one, upper-lower sid
OAT15A-200 airfoil.
pa
a

ric
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obtained, connecting the frequency of the oscillations to
aerodynamic, thermodynamic (M̄0 ,g), and geometrical
characteristics~related to the distance along the critical ang
between the shock and the supposed source of the fluc
tions! of the flow. In all the studied cases, the frequen
theoretically obtained is close to that measured in the exp
ments. To our knowledge, it is the first time that a theoreti
model can predict successfully the measured shock osc
tion frequency. Moreover, certain physical characteristics
the fluctuation~amplitude and phase of the pressure fluctu
tion! theoretically predicted are compatible with the expe
mental results. This modeling seems to describe, by a sim
mechanism of shock response to an external force, the o
lation of a shock wave on an airfoil or in an over extend
nozzle. In future work it seems, however, necessary to
tend this approach to nonconstant basic flows in order
specify these results and to describe the space–time ev
tion of the different fluctuating quantities.
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APPENDIX A: NORMAL MODE

The matrixG and the source vectorF of the algebraic
system~15! are given by

es-
G51
r̄1F S 12

Ū1
2

c̄1
2 D kx

~2!1
vŪ1

c̄1
2 G r̄1ky 2

r̄1Ū1

Cp

ivr̄1

Ū0

@Ū#

r̄1F2Ū1kx
~2!2S 11

Ū1
2

c̄1
2 D ~Ū1kx

~2!2v!G 2r̄1Ū1ky 2
r̄1Ū1

2

Cp

0

ky 2
v

Ū1

0 2 iky@Ū#

v Ū1ky

c̄1
2

Cp~g21!
2 iv@Ū#

2 , ~A1!

F52S r̄1F ~12M̄1
2!kx

~1!1
vM̄1

c̄1
G

r̄1@2Ū1kx
~1!2~11M̄1

2!~Ū1kx
~1!2v!#

ky

v

D C1 . ~A2!
stic
but
di-
the
tics
APPENDIX B: PROPAGATION CONE

To try to understand the physical meaning of the pro
gating cone of acoustic wave in the moving medium, we c
use the geometrical acoustic approximation. The geomet
-
n
al

acoustic approximation consists supposing that the acou
wave is a plane wave. In general, this is not the case,
when we can suppose that locally the amplitude and the
rection of the wave almost do not vary at distances about
wavelength then the approximation of geometrical acous
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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is valid. In this case, we can define the concept of ray as l
whose tangent coincides in each point with the wave pro
gation direction. We thus have

]r

]t
5

]v

]k
, therefore,

dx

dt
5

]v

]kx

and
dy

dt
5

]v

]ky

.

By dividing these equations one by the other, we obtain

dy

dx
5

]v/]ky

]v/]kx
. ~B1!

However, according to the implicit functions rule, we hav

]kx

]ky
52

]v/]ky

]v/]kx
. ~B2!

With the relations~B1! and ~B2!, we can write
Downloaded 28 May 2001 to 144.204.65.14. Redistribution subject to A
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a-

dy

dx
52

]kx

]ky
. ~B3!

In addition, kx
(1,2) is given by Eq.~10!, Eq. ~B3! then be-

comes

dy

dx
56

c̄1ky

Av22ky
2~ c̄1

22Ū1
2!

. ~B4!

This is the ray equation. We note that whenky

.(v/Ac̄1
22Ū1

2), the rays are not defined. The critical ang
thus gives the limit of the geometrical acoustics approxim
tion.

APPENDIX C: JORDAN MODE

The matrixGc and the source vectorFc of the algebraic
system~21! are written as
Gc51
0 2

r̄1b4m

vŪ1c̄1
2

r̄1l 2k
r̄1Ū1

Cp

r̄1b2m

Ū1

2
r̄1b2

vŪ1
2
Fb2mS 11

Ū1
2

c̄1
2 D 1Ū1vnG 2r̄1Ū1l 2

r̄1Ū1
2k

Cp

2
bm

Ū1

2
~mb21nvŪ1!

vŪ1
2

b 2
b l

Ū1

0

2
b2m

Ū1

2
~b2m1nvŪ1!

vŪ1
2

b Ū1l
c̄2k

Cp~g21!

2 , ~C1!

Fc5S 2
ivr̄1

Ū0

@Ū#

0

iky@Ū#

iv@Ū#

D X. ~C2!

After some calculations, an analytical expression of the coefficientCcj
,( j 51,...,4) is obtained:

Cc1
52

i @Ū#~~g21!c̄1
2Ū1@Ū#1Ū0Ū1b21Ū1

42 c̄1
422Ū1

2c̄1
2!

Ū0c̄1
2b2m

vX2
n

m
Cc2

,

Cc2
5

iŪ 1@Ū#@~g21!Ū1@Ū#1Ū0Ū12~ c̄1
22Ū1

2!#

Ū0b4m
v2X,

~C3!

Cc3
52

iŪ 1@Ū#2

Ū0c̄1
2l

vX,

Cc4
5

iCp~g21!@Ū#2

Ū0c̄1
2k

vX.
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Finally, the general solution~20! is

pcf
~x,y,t !5Rp~x,v,q̄!ei @up~x!1v~2~Ū1 /b!1/2x1~y/b!2t !#X,

ucf
~x,y,t !5Ru

~a!~x,v,q̄!ei @uu~x!1v~2~Ū1 /b!1/2x1~y/b!2t !#X

1Ru
~v !~v,q̄!ei @~p/2!1v~~x/U1!1~y/b!2t !#X,

~C4!

vcf
~x,y,t !5Rv

~a!~x,v,q̄!ei @uv~x!1v~2~Ū1 /b!1/2x1~y/b!2t !#X

1Rv
~v !~v,q̄!ei @~p/2!1v~~x/U1!1~y/b!2t !#X,

scf
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Ū1

mCc2
,

Np52S r̄1c̄1
2

Ū1
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