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Critical interaction of a shock wave with an acoustic wave
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The interaction of linear waves with normal or oblique shock waves has been studied by Moore
[NACA Report No. 11651954)], Ribner[AIAA J. 23(1984)], and McKenzie and WestphiPhys.

Fluids 11, 2350 (1968] by writing the fluctuating quantities as normal modes. These different
studies have shown that downstream of the shock exists a critical angle of the incident acoustic
waves where the reflection coefficient is equal to 1. The purposes of this paper are first to point out
that this critical angle may appear as a singularity in the linearized Euler equations, and second to
show that this problem can actually be removed if the perturbation is no longer assumed to be a
normal mode but has a mathematical form which is strictly deduced from the mathematical nature
of the linearized Euler equations. This analysis is then applied to the shock wave oscillations
occurring on a wing profile and in a nozzle. Despite many simplifications, good results are obtained
in comparison with the available experimental data.2@1 American Institute of Physics.

[DOI: 10.1063/1.1351548

I. INTRODUCTION feting is characterized by the vibration of the aircraft struc-
o ] ) o ture, its origin seems to be purely aerodynamic. In particular,
Most of the applications in fluid dynamics involve un- it may result from an unsteady separation located on the
steady flows. This is also true when a strong shock is presedfigil the vibrations of the structure being produced by a
in the flow separating a supersonic ﬂpw _from asubsonlc_on%oup|ing effect. This phenomenon can appear in all flight
In such cases, the unsteady behavior is usually not wishegl imes it is accentuated for transonic flows by the shock
and must be elthgr ellmlnaFed.or at least limité ampli- wave oscillations. This phenomenon is not critical for the
t_ude). Such undeswable oscillations occur unde_r some Condlétircraft but it limits the flight envelope of the civil aircraft,
tions for flows in a rocket motor and on transonic airfoils and. . N
. indeed the maximum level of buffeting is fixed by the regu-
may lead to the well-known buffeting problem. . L
In the field of space engines, with the development oflat'on of the civil aviation. . .
) Although these phenomena aaepriori very different
large rocket motors, unsteady transverse forces not envisaged 9 S€ PN . prior y .
before have been observed for ten years. This problem, o rom th? industrial point of view, the mvolveq physical
served in several engines, has been called “side loads” evépechanlsms seem to be comparable. However, in both cases,
since. Owing to their randomness, these side loads may hajge actual flow is somehow complex: presence of a nonzero
serious consequences, such as nozzle deformations and &essure gradient, a shock wave, a large separation bubble,
gine movements. Moreover, as the perturbation is unsteady"d unsteadiness. A complete computation does not seem to
in module and in direction, the resulting constraints may b€ realistic nowadays and in addition even if it was feasible,
amplified by dynamic effects. The lateral forces can be thud would only describe the flow, whereas our goal is to un-
a limiting factor in the structural design of the nozzle: theyderstand the origin of the unsteadiness.
impose thicker nozzles, then heavier ones, or shorter nozzles, A large amount of work has been done and published in
then less efficient. Both cases lead to a reduction in the payhe last 50 years with approaches that are mainly numerical
load. The exact cause of this symmetry loss is, howeverQr experimental. Recently, a linearized numerical approach,
badly known today; several assumptions have been proposege Ref. 1, provided satisfactory results in comparison with
but without any consensus. the available experiment, but once more, it does not really
In the field of aircraft, a similar phenomenon occurshelp to understand the relevant mechanism.
above the wing when the plane is close to its flight envelope In our opinion, it seems necessary to come back to
limit: the buffeting phenomenon. It appears when the anglesimple configurations even if they are not fully realistic. The
of attack or the Mach number increases. Although the bufequations can be then simplified, the resolution may be thus
analytical, leading accordingly to a possible identification of

aElectronic mail: jcrobine@onecert.fr th(=T ro_le of the different myolved_ parameters. Our starting
PElectronic mail: casalis@onecert.fr point is the study of the linear interaction of an acoustic
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wave with a shock wave. It has been treated by several au
thors, in particular Mooré, Ribner® McKenzie and g
Westphal* and Mahestet al® l

Mean shock

The general objectives of this paper are first to study the
linear interaction of a shock wave with an acoustic perturba-
tion and second to show that the shock oscillations in a
nozzle or on an airfoil can be surprisingly and simply ex-
plained by the shock wave—acoustic wave interaction theory
Basically, two cases depending on the incident angle of this

angle, classical results are briefly recollected. At the critical

angle, the linear interaction theory is completely revisited. Separation bubble Acoustic source
The present paper is divided in two main parts. The first

part deals with the theoretical description of the proposed

approach. After the chosen assumpti¢gsc. Il A), the the-

oretical model is described in Secs. [IB—IIH. In particular,

Sec. Il E shows that there are singular values of the trans- The supersonic zone is supposed to be free of any pertur-

verse wave numbek, for which the linearized Euler equa-  bation.

tions exhibit non-normal solutions. Section 11 G briefly pre-

sents the results when the wave numkgis different from ~ Figure 1 presents the physics of the considered problem.

the singular values, this case has been already treated by

McKenzie and WestphdlSection Il H, devoted to the par- B- Governing equations and boundary conditions

ticular case of the singular values of the wave numkger The general equations for the instantaneous flow are the
contains our Original contribution. The present theory is therEu|er equations' the energy equation, written for the entropy,
applied in the second part to the practical cases of the shogind the equation of state for a perfect gas:

wave oscillation in a nozzle and on an airfoil wing. It is

FIG. 1. Physics of the problem.

shown that the singular value &f seems to play an impor- a—p+V~(pU)=0, (1a)
tant role. at

U+ (U-V)U=—-VP (1b)
Il. THEORETICAL PART Prog TP YR ’
A. Study context: Presentation of the problem and Kl
assumptions 5 T(U-V)S=0, (10

We consider a two-dimensional unsteady flow with a p
straight shock wave. Th& coordinate coincides with the S=C, |n(_7), (1d)
normal of the shock and thecoordinate is perpendicular to
it. The undisturbed shock front is located>at0 and the whereU=(U,V)! represents the two mean velocity compo-
flow moves from thex<O region to thex>0 region. The nents. In addition to these equations, the instantaneous
upstream quantitiegsupersonic zoneare denoted by sub- Rankine—Hugoniot shock relations are imposed at the instan-
script 0 and the downstream quantitiesibsonic zoneby  taneous shock positiofsee Sec. Il D The governing equa-
subscript 1. The flow is considered as a perfect, inviscid gasions and the Rankine—Hugoniot relations form the physical
The assumptions of the present problem are the followingystem to be solved. The boundary condition of this problem
ones: is a given fluctuation radiated from a given point. In the

« The shock is supposed to be sufficiently strong so that thgonsidered applications, Sec. IlI, the boundary condition is a
boundary layer downstream of the shock is separated. It iglane acoustic wave radiated from the reattachment point of
then assumed that this large separation bubble is a sourde Separation bubble.
of fluctuations, the maximum being located at the reattach- ) )
ment point, see Ref. 6. C. Mathematical form of the perturbation

» The radiated waves and the resulting perturbations are sup- The present theory is based on the classical small pertur-
posed to have small amplitudes. The resulting shock disbations technique, the instantaneous flow being the superpo-

placement is also supposed to be small. sition of a known mean flow and unknown fluctuations. All
» The radiated waves are supposed to be plane waves, i.ehe physical quantitieg (for example, velocity components,
crests perpendicular to. pressure, etcare thus decomposed into a mean value and a

* In order to calculate explicitly the shock displacement andfluctuating one:
the oscillation frequencw, the value of the pressure fluc- —
tuation is imposed by assuming that the reattachment point A%y, D=0a+as(x.y,0). )
is an antinode of pressure fluctuation. This is a crude asfhe mean valug is assumed to be a constant in tixe y)
sumption. plane on each side of the shock. This implies that in fact two
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decompositions are written: one upstream of the shock, the [ — — —

, U pU . Y]
other one downstream. According to the constant form of the | — | +[pti]— —[3]—iwp;— X=0,
mean flow, the perturbation can be described as a normal | c? Cp U,

mode with respect to the different variablgs

1+ U +2pult] QU 0
_ = u]—|—=—7%|=0,
a(xy.D =T+Gx)e Mt cc, ® A Co
=2 (8

whereg(x) is the amplitude of the fluctuationk, is a trans- =p|+[VU]+| =———=5| +io[U]X=0,

; Lp Cp(y—1)
verse wave number witk, € R, and c.c. denotes the com-
plex conjugate. The circular frequenayis a real number, it [5]+iky[U]X=O,

represents the frequency of the phenomenon. The mean flow

being constant on both sides sho@x) can be written in  where[q]=(go—0;) indicates the jump relation at the mean
the normal mode forne™**, see Sec. Il E. This more general shock location of the quantity.

expression is used for the treatment of the shock relations. In

the following sectiong' Y=Y is notedE. E. Linearized Euler equations

The decompositioii3) is introduced into Eqg1a)—(1d).
The resulting equations are then simplified, first by taking

The same small perturbation technig@gis used for the ~ into account that the mean quantities satisfy the equations
shock equationgfor more details see Ref).7The perturbed and second by assuming that the fluctuating quantities are
position of the shock is written as small, so that these equations can be linearized with respect
to the disturbance. The resulting equations constitute an or-
dinary differential equations system with respectxt@and
with constant coefficients. Thus, the solution can be sought
under an exponentiad dependencei(x) = ge'**, wherek,
wherex, is the mean shock positidiere,x.=0 due to the s the longitudinal wave number downstream of the shock. It
choice of the coordinate systgrand X represents the shock is appropriate to specify thdf represents the global fluctua-
oscillation amplitude. The latter is assumed to be a smallion whereasq (introduced in the previous sectipnepre-
(compley quantity. The Rankine—Hugoniot relations are sents the amplitude function associated with the fluctuation
then linearized by performing a first-order Taylor expansionwritten in the normal modes form. Finally, the linearized

with respect to the shock displacement amplittdeEach  Euler equations become a homogeneous algebraic system:
quantity,q;, j=0,1 is the sum of the mean quantity and the

fluctuating quantity, both being evaluated just upstregm ( (M—kN)Z=0, ©)
=0) or downstreamj(=1) of the perturbed shock position.
gj is expressed as

D. Linearized Rankine—Hugoniot relations

x="f(y,t)=x.+XE+c.c., (4)

wherek, appears as the eigenvalue of the problgnstands

for (p,0,0,5) andM andN are (4xX4) matrices which de-
pend on the mean flow and of the coefficieatandk, . For

a;(Xc+XEy, 1) =qj(Xc + XE) +q; (X + XEy,1), the explicit form of matricesM andN, see Ref. 8.
. A nonzero solution in Eq(9) exists if detM —k,N)
j=0,1. (5  =0. This condition provides four different wave numbers:
As the coordinate system is such that=0, q; andq, are KL= —wU;—c () K2 = —wU;+c,(
expanded into X Ef—Ui X - U2 '
q;(XE,y,t)=q;(0)+§;(0)E for j=0,1, (6) k§<3)=k§<4)=Uiv (10)
1

whereq(0) is the amplitude of the fluctuation at the mean
shock position. After some calculations, the linearized shoc
relations lead to an algebraic system of equations:

whereQ =[w®—kj(ct—U)]** andC, = (yrT1) 2
The corresponding eigenvectors are

Vi =~ p1(U kM — w), k2 Ky, 01",

AZ4(0)= ApZo(0), 7
121(0)=EX+AoZo(0) (7 Va=[0k,,— kP 0", V4=[0,00.1" 11

where Z;(0) (for j=0,1) stands for the fluctuating ampli- V; is the eigenvector downstream of the shock. These eigen-
tudes vector jp,0,0,5) calculated at the mean shock posi- vectors form a basis if the determinant of the maix,

tion. £ is a known complex vector andy,A; are fourth- whose columns are the four eigenvectdigV,,V3,V,, is
order known complex matrices. For a one-dimensionalifferent from zero. A straightforward calculation leads to
constant flow on both sides of the shock, the general linear-

ized Rankine—Hugoniot, Eq7), can be simplified into detM, # 0= w#{*+ik,U;, £k, (ci— U3, (12

Downloaded 28 May 2001 to 144.204.65.14. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1050 Phys. Fluids, Vol. 13, No. 4, April 2001 J.-C. Robinet and G. Casalis

Physically, the relationw = tikij implies that the second e M,=5
acoustic mode has the same phase speade numberas  _gpi™., 00 e-ee- Mo=3
the vorticity mode(see Ref. ¥. On the other handw= 4o A
+ky(ci—UDY2 implies that the two acoustic modes coin- ] — Mo=1.1
cide. However, the first relation may be disregarded because —60 )
the circular frequencw is required in the present study to be = —ao—- S
real. It remains the second relation which will be extensively ® ; _\ RS
studied in Sec. Il H. Let us assume now that conditib®) is —100 S I
satisfied, so that the general solution of E&).can be written —120 Seae
as ;
~140-
4 ]
() .
qf=( > CJ-Vje"‘xJ X)e“kyy“”‘). (13 ~180 T T T T
=1 0 10 20 30 40 50 60
The four coefficient<;, j=1,...,4, are unknown integration AL
constants downstream of the shock. They are related to the FIG. 3. Angle of the reflected acoustic waig Vs 6, .

two acoustic wavesj& 1,2), the vorticity wave (=3), and
the entropy wave j(=4), respectively. Finally, the fluctuat-

ing quantities are written as .
99 mean flow values, ang is a known source vectdsee Ap-

p1,= (= Capa( Uik~ w)e™ pendix Al. | |
The resolution of the systenil5) provides the ratio

— Copr(Uk® — ) E, C;/Cy, j=23,4. These ratios determine the reflection and
generation coefficients of the different waves interacting

U1f:(C1k§(l)eik(xl)X+ c2k§(2>eik(x2)X+ C3kyeik£<3)x)E, with the shock as well as the amplitude of the shock dis-
) , , (14) placement._ _ _ _ o _

vy,= (Clkye‘k(x x4 Czkye”‘(x x— CakPelk %)E, The objective of this paper is not the systematic investi-
gation of the shock wave response to a linear forcing but

Slfzc4eik<x4)xE_ only the investigation of a particular configuration. This

systematic study has been already achieved by Mbore,
Let us recall thaE=¢'*Y~“Y_ In this paper, only the case McKenzie and WestphdIRibner®® and Hardy and Atassf
where the upstream fluctuating quantities are supposed to e just focus on the case of an acoustic wave propagating
zero is treatedolo, =0. See Ref. 8 for the general case. upstream in the subsonic zone and interacting with the shock
wave.

F. Global problem resolution

. G. Downstream acoustic disturbance
At this stage, we suppose that the constanis known,

this coefficient corresponds to the incident wave. Substitut- Let us noted; and 6, the angles between the wave
ing expressiong14) at x=0 into the shock relation$8)  vectors and thex direction for, respectively, the incident
leads to an algebraic system: acoustic wave and the reflected acoustic wave:

Gx=F, (15

where y=(C,,C3,C4,X)" is the unknown vectorG is a
fourth-order matrix, which depends amandk, and on the

ky ky
0;,=arcta W , 6,=arcta E .

X X
It is appropriate to recall thakﬁl) is negative, the corre-
sponding wave propagates upstream, whetéﬁsis posi-
tive, the associated wave thus propagates downstream. Fig-
ure 2 shows a drawing of different considered angles. The
angle of the reflected wave is shown in Fig. 3 as function of

b, for different Mach numberﬁo. It can be observed that
for each Mach number, a threshold valﬂ@ of 0;, exists.
For 6; <0, the reflected acoustic wave propagates down-
—— e e b —_—eee- -z stream. Beyond this critical anglélc, the acoustic wave
cannot be propagated without damping or amplification be-

cause the longitudinal wave numbésd® become complex
numbers. Moreover, there is an an@l% beyond which/ 6, |

is larger thanz/2. This angle corresponds to the case for

incident acoustic waves

generated entropic or rotational waves

: T~ . kfﬂ“_“”d ortrnsmitedacousticwaves— which the reflected vector wave is directed to the shock. The
Mean shock s shoclk focation calculation of the phase velocity and the group velocity of
FIG. 2. Drawing of the different considered angles. the incident wave and the reflected wave permits us to deter-
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A 1981' A 'l9<pm
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FIG. 4. Longitudinal group velocity, for the incident and reflected acous- FIG. 5. Longitudinal phase velocity for the incident and reflected acoustic
tic waves vs@; . wavesd,, vs 0, .

mine the behavior of the acoustic waves according to theeflected acoustic wave propagates from upstream to down-
incident angle. These velocities are defined as follows: stream. Whero, = 0i the incident and the reflected acoustic

p K wave cannot be distinguished. This angzlgcz is given by

w w J— J—

Y=k, Vy=—=C7+U, 16 0, =arcos and corresponds to the critical transverse
TIPS YTk O ) hmarcostd) and 46 to the critical

wave numberk§=w/ \/CE—UZ. Figure 6 provides a sche-
for the phase velocity and the group velocity, respectivelymatic representation of the cone for the admissistzal)
Figures 4 and 5, respectively, show the evolution of thepropagation directions of the acoustic waves. For more de-
streamwise component of the group velocity and the streamgjls, see Appendix B. This critical mode corresponds to a
wise component of the phase velocity versus the incidenfalue ofw which has been excluded, see relatitg) in Sec.
angle 6. Figures 4 and 5 show that the longitudinal phase| E, a special analysis is thus necessary, see Sec. IIH. Be-
and the longitudinal group velocity of the incident acousticfore detailing this case, let us look at the evolution of the
wave are always negative. For the reflected acoustic wavgeflection coefficient to incident acoustic wave versus the
the longitudinal phase velocity is positive Hi<0ip and  incident angle wher, < 6; :
negative if6,= 9ip, whereas the longitudinal group velocity ¢

is always positive. However, the latter is zero for the two  p(" k;Z)Ul_w C,
waves whery, = b, (the transverse group velocity is differ- orte o C_
ent from zero at this angleIn conclusion, Whenaip< 0 P1 kKa'Ui—w/ +1

<0, although the wave number is directed to the shock, thé\fter some calculations, the pressure ratio can be written as

) w? w? _ M2-1
- 2—w k§+r2)—(__ I | (0= Uik | —=
Py’ (KPUi—w)| Uo ui/ U, M3 a7
By kf(l)Ul— o) U, ) w? w? 5 — 5 I\Wg— 1
2—o| K+ = || == +K | (0= UK?)| —
L Uo Ui/ \UiUg Mg /|

Figure 7 shows this evolution for different upstream Machin addition, the work of McKenzie and Westphaind
numbers. This pressure ratio is always lower than 1, thélavier—Stokes computations of Zang and Bushhédiave
shock can be thus considered as stable in the sense that thigown that in the vicinity of this critical angle, the reflected
amplitude of the reflected wave is always lower than thecoefficient of an acoustic wave is close to 1, a result which is
amplitude of the incident wave. However, this pressure ration agreement with the previous computations. By extrapoling
strongly depends on the incident angle. There are angles fdne results for 0i— 0;, it can be summarized that: the
which the pressure ratio is zero. Whép- 6, , the pressure  streamwise component of the group velocity tends to 0 and
ratio tends to be maximal and equal t@id absolute value  the reflected wave amplitude becomes identical to that of the
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Ay wU. o
KY=kP=-—3 and K@=kY=—. (18)
B Uq

The eigenspacg(=Ker (M —k{®N)? associated with the
eigenvaluek(® is of dimension 2 and is generated by

t
o,|,—£|,o) and V,=(0,0,0k)",

V.=
3 U,

VI,k#0.

Where subscript € corresponds to the critical angle. The
eigenspaceE, (v =Ker (M —k{N)? associated with the ei-
genvaluek(xl) is of dimension 1 only, and is, hence, gener-
ated by one vectov, . Thus, there is no basis in which the
matrix N" M is diagonal N"?! is always invertiblg The
last vectoV, is sought such that the matix M is in the
Jordan form, i.e.,

Shock

FIG. 6. Diagram representing the critical angle.
(M—KPN)V, =NV, .
2 1

incoming one, the shock response becomes marginal. HowW=nally,
ever, as mentioned above, the previous analysis must be per- — t
formed again from Sec. Il E by writing the disturbance in an _ P11

adapted basis fof;= ¢; . The shock treatment does not need ‘1 '

to be analyzed again, because the fluctuation fg{®) is

——mm,——m,0
U, U

completely general, independent of its mathematical expres- ELEE B*
sion. Ve,=| == |t —m|
Ul wU lC]_

H. Study of critical angle .
Equation(15) has been obtained fd¢,<w/B, with g n,—%(nwgﬁ m,BZ),O) ,  ¥Vm,n#0.
= \E2-U2 or for 6,< 6, Let us look at the cast, R

=wl/ B, this value corresponds to a value kaf which has  In this basis, the matrifi~*M is given by
been excluded and for which the four eigenvectd® do

not form a basig12). wU;
For ky=w/ B, the eigenvalues of Eq9) are given by - ? 1 0 0
(I)U]_
0 - 0 O
B
J= . (19
w
0 0 — 0
Ug

w

0 0 0 —

Uy
The primitive fluctuating quantitiesp(,u.,v.,S;) can be

found by
Z=Pe"xs,
1 LI N whereP is the basis transformation matrix, the columns of
0 15 30 45 60 75 which are the eigenvectors of matrik™*M and y. is the
6, vector (Ccl,Ccz,Cca,C%)t formed with the integration con-
FIG. 7. Angular dependence of the reflection coefficient for acoustic wavestants. Ultimately, the general solution of E@) for the
for different upstream Mach numbers. modek, = w/g is
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FIG. 8. Sajben and co-workefsee Refs. 12, 13, and JLdiffuser model.
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The critical mode thus exhibits an algebraic growth, which ~ FIG. 9. Shock motion power spectrum in a nozzle, experiment.
comes from the nondiagonal structure of the reduced matrix

J. Expression20) for x=0 is then introduced into the lin-
earized relations of Rankine—Hugoni8). The following
algebraic system is obtained:

the heighth at the throat. In this paper, only the diffuser,
with [/h=13, is studied with the proposed approach.

Gexe=Fc. (21) 2. General descriptions

G, is a fourth-order matrix, which depends anand on the In the considered configuration, the fluid accelerates
mean flow andF. is the source vector. The determinant of from a subsonic speed to a supersonic speed through a sonic
G, is always different from zero, thug.= G, 'F. is always  throat, and is abruptly decelerated by a shock wave located
defined. The explicit form of the matriés., the vectorF,, downstream of the throat. The flow is exhausted directly to
the analytical expression of the coefﬁcieﬁg j=1,..,4, the ambient air so that the boundary conditions at the exit
and the general form of the squUcm are reported in Ap- cross section are closely characterized by a spatially and

pendix C. We are thus able to have relations similar to Eqtémporally constant static pressure. The flow conditions are
(17) but applied to the critical case. then mainly characterized by the ratio of the static pressure at

the exit section to the total pressure at the inl&;
=p./p;- This ratio determines, among other properties, the
Ill. APPLICATIONS shock strength and the Mach numiég ahead of the shock.

Section Il G proves that if there is an emission of acous-The flow patterns obtained with this diffuser depend on the
tic waves in all the admissible directions from a source lo-Mach number. In Sajben’s experiment, shock-induced sepa-
cated downstream of the shock, the shock wave responsation occurs for Mach numbeid , greater than 1.3 and, in
preferentially to the incident acoustic waves with directionthis case, spontaneous self-oscillations have been observed.
close tod;_ (see Fig. 7. These oscillations consist of a shock oscillating motion to-

Under certain conditions, the shock wave in the supergether with the occurrence of fluctuations downstream of the
sonic flow may exhibit oscillations. As described in the In-shock. In all cases, no oscillation has been observed in the
troduction, this may occur in supersonic diffusers and orsupersonic zone. The following results are limited R
transonic airfoils. The next two subsections are devoted to &0.72 My=1.34).
description of examples for each of the two cases.

3. Experimental results

Among Sajben’s experimental results, the shock motion
power spectrum is of particular interest. This spectiiim
1. Diffuser geometry represented in Fig. 9. It shows that the most sensitive fre-

The major experimental contribution on self-sustainegduencies, for a diffuser lengttth=14.4, are close to 200
shock oscillations in the diffuser has been achieved by th&iz. Figure 10 shows the experimental results for theUso-
McDonnell Douglas team headed by Sajtérn*One of the
diffusers used in the experiment is asymmetric with a flat \ N
bottom wall and a converging—diverging channel. This dif- -
fuser is equipped with many suction slots on the vertical ]
walls, so that the flow can be considered two-dimensional, anf
least in the middle section between the two lateral walls of ]
the channel. Figure 8 gives a sketch of the experimenta™,
setup. The diffuser length corresponds to the distdrioe-
tween the throat and the exhaust section and is scaled with FIG. 10. U contours (n/s), Sajben’s experiment.

A. Self-sustained shock oscillations in transonic
diffuser flow

o Trrrrr
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contours. On the upper wall, the boundary layer presents with f and g given by wf(q)=A\/, and wzg(a)=/\/lp, see
large separation bubble. The reattachment point of the upp&ppendix C. The only acceptable solution is the relation
boundary layer is located at’h~5. As explained before, (23b). It remains to perform a numerical estimation. The up-
this point is supposed to be an acoustic source of planstream mean flow is chosen such that the upstream Mach
waves. number and the shock position are realigtesulting from a
stationary Navier—Stokes calculatipthe downstream mean
flow is calculated through Rankine—Hugoniot relations. In
this case, the upstream Mach number is equal to 1.3. The

In this paper, the perturbe_d _flow is supposedly_InVISCId'criticaI angle corresponding to this Mach number is equal to
the present approach is thus limited to the core region wher — . o
=arccosi,), i.e., ¢, =38° in the present case. In the

the viscous effects can be neglected. The mean flow is asde™ <" _ _
sumed to be constant on both sides of the shock. Althougfrartesian coordinates systexy fixed on the mean shock,
this assumption is not true even at first approximation in thdh€ mean reattachment point coordinates,y,) are (0.12,
boundary layers and just downstream of the shock, we wilP-09, where the origin iry is on the lower wall. The relation
show that the knowledge of the upstream Mach number of230) permits us to find a frequenay/(2) equal to 191.2
the shock, the jump relations through shock, and purely gedZ (i=1). The experimental results of Sajbéfig. 9) ex-
metrical data are sufficient to determine the shock frequencég'b't a well-defined peak close to 210 Hz. The result is not
of oscillations and qualitatively some characteristics of theP@d, taking into account the numerous assumptions for our

perturbed flow. approach. i _ "
The reattachment point emits acoustic waves in all the ~Many theoreticaland numerical studiésiave been per-
directions, in particular, with angles close to the critical formed for the stability analysis of a shock wave or the reso-

. In Sec. Il H, the analytical expression of the fluc- lution forlthe Iinearized E_uIer equations, both with the smal_l
perturbation technique with a mean flow close to the experi-
. . : o _mental one. All these studies confirm the present approach
N9 quantltle_s are proportional to the_ shock _os_(:lllauon "_"mpl"for the value of the frequency. Among Sajben’s experimental
tude X which cannot be . determlned_ within the _I|near results, the amplitude and the phase of the pressure fluctua-
analysis. In order to determine the amplitude of the dlfferenEiOn can be compared to our results. The results are illus-

fluctuating quantities, the flu_ctuating pressure, for exampletrated in the Fig. 11. The results are qualitatively close to the
must be known somewhere in the flanormalization. The o, hoiment, the amplitude of the fluctuating pressure is
circular frequencyw also is not determined. To determine it, roughly constant downstream of the shock and the phase

a reIat|ohn betweer;] the shock andghe .sourc_?hof thle f':‘cous%riation is increasing as in the experiment. Nevertheless, the
waves|(the reattachment poinmust be given. The relatioa existing differences are related to the assumptions on the

priori chosen consists to Suppose that the re.attachmenF POIRtean flow. They are significant in particular immediately
is an extremum for the fluctuating pressure, i.e., an ant'nc’daownstream of the shock where the flow is strongly depen-
of pressure: dent onx, and near the wall, whereas it is, respectively, as-
Re ps(X; .Y, D)1, sumed to be constant and negligible in the present theory. In
fact, if the frequency is controlled mainly by a geometrical
aspect (reattachment point-shock distancahe boundary
le y) ” 0 layer close to the wall and the nonconstant zone just down-
(X Yp)

4. Simple modeling

angle 0;,
tuating pressure fo#, = 6i. has been obtained. All fluctuat-

is a pressure antinode if
J
5[C0{ Op(X) + | — FJF 8 stream of the shock, are the weakly extended zone in com-
parison with the total distance. The approximation of the
and mean flow by a constant flow is thus quite valid at first
_ approximation. For information, the amplitude and phase
d Xy evolution of the pressure fluctuation for nonconstant flow are
ay cog Op(x) + w| — 7+ B =0, 22 geferred on Fig. 11for more details, see Ref).1The fast
o) evolution of the pressure fluctuation amplitude close to the
with (X, ,y,) the coordinates of the reattachment point. Aftershock, where the flow is strongly dependentois qualita-
some calculations, relation@2) give three possible solu- tively found.

tions:
_ B. Self-sustained oscillations on a wing of a
®=0, (233 ansonic airfoil
Im[f(a)] arime 2| — Usx, N vies This section is devoted to a validation of the present
xg@ anlm B B Ye] | VISA approach for the shock oscillations inducing the buffeting
(23b) phenomenon.
B Ul 1. Profile geometry and general descriptions
w?=— ———| IM[F(@]g(@+ — [9(@]?| <O, geometly and.g P
Ui [g(@]? B Two transonic airfoils are considered: the OAT15A-CA
o airfoil,® with a chord ofc=200mm and CAST 7/DOAY
VMg>1, (230 with a chord ofc=100 mm. The flow on a transonic airfoil
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is characterized at the design point by the presence of a larg@®s, chord, the determined shock oscillation fis 140 Hz,
supersonic region on the upper surface ended by a shockhich is verified by the spectral density distribution depicted
wave. Increasing the Mach number or the angle of attackn Fig. 12.

beyond the design point leads to the development of stronger  For the airfoil OAT15A-CA, there are more experimen-
shocks which initially only thicken the upper surface bound-tal results, especially close to the buffeting threshold. The
ary layer. However, depending on the severity of the reapuffeting appears by a very clear increase in the level of
adverse pressure gradients, a trailing edge separation mayessure fluctuations on the airfoil when the Mach number or
have already developed. A further increase in shock strengtihe angle of incidence reaches a well-defined limit. With
causes the boundary layer to separate at the foot of the shodlggard to the incidence, this limit is reached far=2.94°.
Again, there may or may not be a trailing edge separationFigure 13 shows the fluctuating pressure spectrum down-
Raising the angle of attack or the Mach number causes the&ream of the shock. The shock oscillations are close to 80
shock-induced separation bubble to spread downstreamz, for a Mach number oM..=0.736. Figure 14 shows the
while, at the same time, rear separation, may slowly movevyolution of the experimental fluctuating pressure coefficient
upstream. Joining together the two separated bubbles usuali¢g a function of the airfoil incidence.

leads to the beginning of shock oscillations, a condition fre-

quently referred to as airfoil or wing buffet. In our approach, 5 Simple modeling

the fluctuations are supposed to be small, i.e., only the be-

ginning of buffeting is accessible to our approach. The theoretical approach is strictly identical to that pre-
viously employed. The reattachment point, here the trailing
2. Experimental results edge, is supposed to be an extremum for the fluctuating pres-

sure. The relatioi23b) permits us to obtain the frequency of
For the airfoil CAST7/DOAL, the available experimental

results, which can be compared to our approach, are very
few. At the free-stream conditions considered, i.e., a Mach .
number ofM,=0.77, an angle of attack at.=3°, and a 3-5
Reynolds number of Re6x10° with the transition fixed at ]

-4+
x/e &« 050 5]

0050 v ]
(-] .

! g 6]

# o 13SHe .

74

.
]

.
©

L | g LR R R { L N e

10! 10° 10°
0 250 Tred 500 f

FIG. 12. Spectrum of fluctuating pressure for the critical incidence, CAST7/FIG. 13. Spectrum of fluctuating pressure for an incidence-e2.94°, for
DOA 1 airfoil, experiment. an abscissax/c=0.5, OAT15A-200 airfoil, experiment.
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FIG. 14. OAT15A-200 oscillation, evolution of pressure fluctuation vs in- —4.2 ? ————rT
cident angle. 05 0.6 0.7 0.8 0.9 1.0
x/c

the oscillation. These results, for the different studied prof!G. 15. Comparison between the measured amplitude of the fluctuating
files, are summarized in Table I. In Table I, one other girfgilgzisllgf_;%roa;r'fgﬁ'.dence @=2.94° and the theoretical one, upper side,
(OAT15A-150 is also presented. The OAT15A-150 airfoil

belongs to the same family as airfoil OAT15A-CA but with

a chordc=150 mm (for more details, see Ref.).8Still, in activated zone with a critical angle can interact with the
these cases, the present rough modeling permits us to find tisbock in an optimal way. These assumptions need to be
characteristic frequency of the oscillations. For thespecified and checked, which will be the subject of future
OAT15A-CA airfoil, Figs. 15 and 16 illustrate the compari- work.

son between the experimental and theoretical results for the

streamwise evolution of the amplitude and the phase of th&/. SUMMARY

fluctuating pressure. Experimentally, the amplitude of the

pressure fluctuation on the shock position is significant be- n the study of the interaction of the linear waves with a

cause the shock crosses the sensors. Downstream of t 8mal shock wave. The previous studies, Mdorand

shack, the ampli_tude iS. r?ea”y cc_)ngtant. The phase of thﬁ/chenzie and Westphafshave shown that t,he reflection

pressure fluctuation exhibits a variation of 135° between th%oefficient of an acoustic wave downstream of the shock is
it 0,

mean shock position and 90% of the chathle reference always lower than 1. However, a critical angle for the inci-

pr:je_lset beltr;]g ﬁﬁen d_adtc=bo.9). The ev?jlutlon tOf this ihasethdent acoustic wave exists for which the reflection coefficient
indicates that the disturbance moves downstréam. As in g equal to 1. At this angle, the shock response is thus mar-

Sas:a O;( thet nozzle,_ the tth%c])relncal ptrzt_jflfcnons are ?ual'tt ginal. In this paper, this critical angle has been connected to
Ively close to experiment. 1nhe fargest diifference Is close linearized Euler equation singularity. This singularity cor-

the shock, where the mean flow is clearly not independent 0esponds to the case where the incident and the reflected

)r(n(()trhee assumptions of our modeling are thus not valid aMY;coustic waves coincidesame frequency, same vector num-

ber wavek and 6, = — 7— 6;). From a mathematical point of
view, this singularity simply corresponds to the case of the
crossing of two eigenvalues branches with, furthermore, an
It remains to determine theoretically the oscillation eigenspace of dimension 1 only. Hence, the linearized Euler
threshold. One can reasonably suppose that the size of tleguation cannot be diagonalized so that the perturbation is no
separated zone plays a fundamental role. Indeed, accorditgnger a sum of normal modes. The main characteristic of
to our assumption, if the separation bubble is too small or todhe perturbation is to exhibit an algebraic growth with re-
wide, the critical angle resulting from the point of separationspect tox, the x dependence is of the formak+ b)e'**E.
strikes the shock in a zone where its selectivity is notConsequently, if there is in the flow an acoustic source emit-
guaranteed? In the nozzle case, if the separated zone is toding waves in all the possible directiorifor example, the
large, the acoustic waves with a critical angle can “miss” reattachment point of the separation bubbikee shock wave
the shock because they will interact with the boundary layepreferentially responds to the incident waves close to the
of the opposite wall. Thus, an optimal size of the separatedritical angle. These results were applied to the case of the
zone must exist so that the acoustic waves resulting from thshock wave oscillation in a nozzle, then to an airfoil wing.

The analytical methodology of the present work is based

C. Comments

TABLE |. Data and results for different airfoils.

Re M. chord (mm) ag fexp fiheo (% ,Yr) b;,
OAT15A-CA 45<10°  0.736 200 2.94° 80 Hz 86.3 Hz (0.08,0 37.3°
OAT15A-150 6x10° 0.73 150 3.25° 100 Hz 105.3 Hz (0.09,0 37.1°
CAST7/DOA1 ex10®  0.77 100 3° 140 Hz  133.2Hz (0.050 38.2°
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150+ o experiment obtained, connecting the frequency of the oscillations to the
135 o — Theory aerodynamic, thermodynamicM(,y), and geometrical
characteristicg¢related to the distance along the critical angle
between the shock and the supposed source of the fluctua-
tions) of the flow. In all the studied cases, the frequency
theoretically obtained is close to that measured in the experi-
ments. To our knowledge, it is the first time that a theoretical
model can predict successfully the measured shock oscilla-
tion frequency. Moreover, certain physical characteristics of
the fluctuation(amplitude and phase of the pressure fluctua-
tion) theoretically predicted are compatible with the experi-
mental results. This modeling seems to describe, by a simple
05 os o7 o8 o9 10 mechanism of shock response to an external force, the oscil-
x/c lation of a shock wave on an airfoil or in an over extended
FIG. 16. Comparison between the measured phase of the fluctuating preQ-OZZIe'.ln future work it seems, howeve_r’ neces_sary to ex-
sure for an incidence af=2.94° and the theoretical one, upper-lower side, t€nd this approach to nonconstant basic flows in order to
OAT15A-200 airfoil. specify these results and to describe the space—time evolu-
tion of the different fluctuating quantities.

Indeed, in both cases there is a Mach number threshold b&ACKNOWLEDGMENTS

yond which the level of the unsteadinesses strongly in-  This study has been supported by the Center National

creases. This threshold generally corresponds to the eXiﬁ‘EtudeS Spatiale€CNES and the Office National d’Etudes
tence of a massive separation bubble. The reattachment poigf 4o Recherches A@spatiale ONERA).

or the trailing edge is assumed to be the center of strong

unsteady activity. There are fluctuations which may arrive on )

the shock with an angle close to the critical angle. When theAppE'\“:)IX A: NORMAL MODE
present theory is applied, by supposing that the emission The matrixG and the source vectdf of the algebraic
point of the fluctuations is a pressure extremum, a relation isystem(15) are given by

ui wU; — piU;  [op1 =
ol | 1- =2 k@4 2t mk, - —[U]
”[( G Y. G
_ u?) _ U2
Pl 2U.k@—| 1+ ;1>(u1k;2)—w)] 2p1U 1k, —pé L 0
c
G= ! P , (A1)
k e U
- 0 —ik,[U
y U1 y[ ]
Uik g [U]
w U —iw[U
YCyy-1)
_ oM
Pa| (1= MKP+ —= 1}
C1
F=—| pal2Uk ~(1+ MUk -w)] | Cy. (A2)
ky
w
|
APPENDIX B: PROPAGATION CONE acoustic approximation consists supposing that the acoustic

wave is a plane wave. In general, this is not the case, but

To try to understand the physical meaning of the propawhen we can suppose that locally the amplitude and the di-
gating cone of acoustic wave in the moving medium, we cartection of the wave almost do not vary at distances about the
use the geometrical acoustic approximation. The geometricg{avelength then the approximation of geometrical acoustics
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is valid. In this case, we can define the concept of ray as lines  dy Ky
whose tangent coincides in each point with the wave propa- G~ = gy (B3)
y

gation direction. We thus have
In addition, k{*? is given by Eq.(10), Eq. (B3) then be-

a  Jdw dx Jdw dy Jdw comes
—=—, therefore, —=— and —=—. B
ok dt  dky dt  dk, dy cik,
ax — (B4)
By dividing these equations one by the other, we obtain X w?—ki(ci—U))

This is the ray equation. We note that whek,

(B1) >(w/\/c§l—U§), the rays are not defined. The critical angle
thus gives the limit of the geometrical acoustics approxima-
tion.

dy dwldky
dx  dwldk,

However, according to the implicit functions rule, we have

K = dwl ok (B2) APPENDIX C: JORDAN MODE

ok, dwldk,’
The matrixG, and the source vectdt, of the algebraic
With the relationsgB1) and (B2), we can write system(21) are written as
p1B'm _ U,
0 T p1l -k
(,()U]_Cl Cp
pBm  py B2 Uil _ U%k
T plﬁ ,BZm( 1+;1 +Uson| 2pU,l — P11
U, wU7 C1 Cp
G.= o , (C)
_Bm _(m,82+an1)B Bl 0
U]_ in Ul
B?m (B2m+nwU,) _ c?k
I - —_2,3 Ul N
U, wUl Cp( v—1)
B iwpq U
Uo
F.= 0 X. (C2
ik,[U]
iw[U]

After some calculations, an analytical expression of the coeffi@gjn(j =1,...,4) is obtained:

i[UT((y—1)T2U,[U]+UoU, 8%+ Uj—c}—20%c) n
6= — wX——CCZ,
UoCiB%m m
UA[UI[(y=DU[U]+ UV~ (€1 -UD]
co — WX,
2 UoB*m
- (C3
iU [U]J?
c3——_1—7,,wX,
Uoctl
iCp(y— DU
= —— X

UoCek
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Finally, the general solutiofR0) is

Do, (X,¥,1) = Rp(X, 0 @ellfp0+o(~ (U182t (v -0y
f L 1 L 1 1

; 0. 1/2
ucf(x,yJ) tha)(X,w,a)el[ﬁu(XHw(*(Ul/B) X+(y/B)*t)]x

+REJU)(w'a)ei[(v-r/Z)-%—w((X/Ul)-%—(y/,B)—t)]X’
_ (C4
i /
vg, (X,Y.1)= R (X, w,q) /L0000~ (U118 2+ (vIB) -]

+Rf}v)(w’a)ei[(ﬂ'IZ)Jrw((X/Ul)Jr(y/B)ft)]X’
Scf(x,y't)zRs(w,a)ei((ﬂ'/Z)Jrw((X/U1)+(y/B)7t))X,
with
° Rp(xawla):\/(XMp)2+[|m(Np)]21

D0 — arct Im(Np)
p(X)=arcta XM, |
with
e
Mf-lé Ce,:
Uy
— —
p1C1 p1B
N,=—| ==(mC. +nC.)— =—mC, ,
p ( Ul ( Cq 02) in CZ)

o RE(x,0,q)=(xMy)2+[Im(N) 1%,

B r(lm(NU))
0,(x)=arctal X—/\/lu ,

with
Muzichz,
Rfjv)(w,a) = Im(ICCS)

o« R (x,0,8) = V(xM,)Z+[Im(N,) %,

Im(N;))
XM, )’

Ny=mC, +nCq,

0,(xX)= arctar(

with
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Mvz—ingCZ,
U,
:8 2
N,=——=—[mC. +nC.. + —mC,._|,
v Ul Cl C ® 1 C2

Rf,”)(w,a)=£lm(l(303),
Uy

* Rs=Im(KC;).
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