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Biglobal linear stability analysis of the flow induced by wall injection
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The hydrodynamic stability of the flow in a solid rocket motor is revisited using a general linear
stability approach. A harmonic perturbation is introduced into the linearized Navier-Stokes
equations leading to an eigenvalue problem posed as a system of partial differential equations with
respect to the spatial coordinates. The system is discretized by a spectral collocation method applied
to each spatial coordinate and the eigenvalues are determined using Arnoldi’s procedure. A special
emphasis is placed on the boundary conditions. The main result is the discrete nature of the
eigenvalue set. According to the present theory and the obtained results, only some discrete
frequencies may exist in the motor (as eigenmodes). These frequencies only depend on the Reynolds
number based on the injection velocity and the radius of the pipe flow. They are compared to
measurements that have been performed at ONERA in one case with a cold-gas setup and in another
case with a reduced scale live motor. Due to the agreement obtained with both experiments, the
biglobal stability approach seems to offer new insight into the unresolved thrust oscillations

problem. © 2006 American Institute of Physics. [DOI: 10.1063/1.2160524]

I. INTRODUCTION

Large solid rocket motors exhibit thrust oscillations un-
der some specific conditions. The amplitude of these oscilla-
tions is not very large (maximum 2% or 3% of the mean
thrust) and seems to be very sensitive to the environmental
conditions; accurate predictions for practical applications are
thus not workable up to now. The physical mechanism itself
from which the oscillations originate is still not well under-
stood. For about 20 years, several studies have been devoted
to this problem. The present paper presents a biglobal ap-
proach leading to a model for the theoretical prediction of
the observed thrust oscillations.

The published studies can be divided into three groups:

e The first one deals with experimental activities and is itself
divided into two subgroups. Experiments with combustion
(with the real propellant or a modified one) are on one
side, either full scale or using reduced scale motors; so-
called “cold-gas” experiments are on the other side. The
first ones are obviously more realistic, particularly con-
cerning ambient conditions, such as the pressure, the tem-
perature, the combustion process, and also the slow in-
crease of the cavity volume due to the wall regression.
Measurements are not easy in such conditions and only
global information is available, usually the steady and the
unsteady pressure at the front wall and/or close to the
throat. Conversely, setups using gas at ambient conditions
work with a constant value of the radius pipe, allow in-
flow detailed measurements in addition to the ones similar
to those used with combustion.

e The second group contains numerical investigations,
mainly by using Reynolds-averaged Navier-Stokes solvers.
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Their main advantage is that this approach allows paramet-
ric studies in order to analyze for instance the effects of
some cavities, their position, their size, the shape of the
nozzle, and the presence of protuberances in the flow.

* The last group includes the theoretical activities that aim to
provide physical models for the considered problem. The
present paper belongs to it.

Let us start with the current state-of-the-art ideas regard-
ing the thrust oscillations. Experiments with combustion
show that these oscillations may appear, but only at some
instances of the firing. They also show that the frequency of
the oscillations, when they exist, is close to that of one of the
longitudinal acoustic modes (the fundamental one or one of
its first harmonics). As described in Refs. 1-3, the latter is
simply obtained as an irrotational mode by considering the
motor as an organ pipe. There is then a rotational contribu-
tion due to the flow inside, but it does not modify the fre-
quency itself. However, a detailed analysis of the measure-
ments in the presence of significant pressure oscillations
shows that the frequency changes with respect to the time; it
exhibits continuous paths (the frequency decreases) and
abrupt jumps (sudden increase), moving back the frequency
to a value that is close to the acoustic mode (see Fig. 1). This
behavior (continuous paths and abrupt jumps) may occur
several times in the experiments with combustion either in
full scale or in reduced scale. The goal of the different works
devoted to this purpose is to understand the physical origin
of the oscillations, to be able to predict the associated ampli-
tudes, and finally to propose practical solutions in order to
remove them or at least reduce them.

Taking into account the exhibited frequency paths, the
acoustic longitudinal mode cannot be the single mechanism.
During the firing, the geometry changes as mentioned above;
the cavity volume increases due to the increase of the cham-
ber radius where the flow takes place. There are other modi-
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FIG. 1. Time evolution of the frequency of the fluctuation associated to the
largest amplitude in symbols. The dashed line represents the frequency evo-
lution of the fundamental cavity mode. The evolution of the latter is due to
small variations of the mean quantities. Experiments have been carried out
at ONERA with a small scale motor called LP9 (see Ref. 28).

fications that depend on the load structure. As proposed ini-
tially by Vuillot,* three possible sources of unsteadiness may
be invoked: they are called by the acronyms VSA, VSO, and
VSP. VSA (angle vortex shedding) may occur at the upper
downstream angle of a block of propellant; at this point the
wall ejection is not uniform and may induce hence some
shear instabilities. VSO (obstacle vortex shedding) is related
to the presence of inhibitors between two blocks that appear
to be obstacles inside the flow, inducing an unsteady wake.
For a long time, VSO has been believed to be either the main
source or the only source of the thrust oscillations. However,
their role is not so clear as experiments in combustion with
metallic (nonabrasive) inhibitors do not present large oscil-
lations whereas the same configuration without inhibitors
does present large oscillations, as experimentally proven in
Ref. 5. VSP (parietal vortex shedding) does not come from a
geometry irregularity but is a hydrodynamic instability of the
flow itself, for which a biglobal approach is described in the
present paper.

This instability (VSP) cannot be measured directly in
experiments with combustion, but it has been identified in
different computations,6 for instance, and in cold-gas experi-
ments. The theoretical approach is based on the usual small
perturbation technique: a mean (or basic) flow being given
(the so-called Taylor flow in the present case as it will be
reminded in the following), a perturbation is superimposed
without any forcing term in the boundary conditions (the
perturbation is assumed to be an eigenmode). Then due to
the linearization and to some symmetries of the mean flow, a
particular mathematical form for the perturbation is pre-
scribed, leading usually to an ordinary differential equation
with respect to the coordinate associated with the normal
distance from the injection wall. The first investigations con-
sider the plane geometry and the pioneers are Varapaev and
Yagodkin.7 As discussed in Ref. 8, their approach is not fully
consistent by assuming for the perturbation an exponential
dependence with respect to the streamwise coordinate and by
keeping at the same time the nonparallel terms induced by
the mean flow. However, using the same theoretical approach
and again for the plane geometry, the first validation with
respect to cold-gas experiments is given in Ref. 9. It is
proved that even if not fully coherent the nonconsistent qua-
siparallel approach gives results that are in very good agree-
ment with the measurements. A first extension to the cylin-
drical and more realistic geometry is given in Ref. 10 with a
similar approximation for the nonparallel terms. Some gen-
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eral comparisons with experimental results are published in
Ref. 11. However, in both cases, if the agreement between
the measurements and the theoretical results seems to be ac-
ceptable, some noticeable differences remain that do not
seem to exist in the plane case.

The most probable weakness of the theoretical stability
approach used is in relation to the nonparallel effects and
consequently to the induced inconsistency. According to the
theory used, the critical frequency (the one that crosses first
the neutral curve) is about twice as large in the cylindrical
geometry compared to the plane case. This leads to a wave-
length that is about half its value in the plane case. Thus, one
can explain why the nonparallel effects can be more impor-
tant in the cylindrical case than in the plane configuration. To
solve this difficulty the present biglobal approach treats
the mean flow as a general function of two spatial coordi-
nates (x and r in the present case). This approach is more
general but needs more computational resources than the
classical stability theory. Due to the improvement of the
computational capacities (the random-access memory and
not the speed in our case), the general approach starts to be
used for different mean flows. The first application was the
laminar Poiseuille flow that may exist in a rectangular duct
(see Ref. 12). This configuration has the advantage to be
mathematically well posed with respect to the boundary con-
ditions, therefore, it plays the role of a test case for code
validation. The stability analysis for this flow has been revis-
ited successfully (see Ref. 13 and later in Refs. 14 and 15).
Then the laminar boundary layer on an infinite swept wing in
the neighborhood of the attachment line has been investi-
gated by some contributors (see Refs. 13 and 16). Other flow
configurations have been analyzed using this technique such
as a separation bubble in a boundary layelr.]7 In these con-
figurations, at least one of the boundaries is not a physical
one and thus “ad hoc” conditions must be imposed on it (see
Refs. 16 and 18) as it is also routinely done for Navier-
Stokes computations with exit boundary conditions.

We also developed a code to be applied to strongly non-
parallel flows and validated it (see Ref. 19) in comparison
with previous studies.'®'® The present flow induced by wall
injection, however, has not been investigated previously by
the general approach; to our knowledge, this is the first con-
tribution.

The present paper starts with a description of the physi-
cal model including the geometry, the mean flow under in-
vestigation, and a short summary of the standard linear sta-
bility approach, which is not consistent in the present case as
explained above. Then, a short description of two experimen-
tal setups is given, one with cold gas, the other with a small
scale solid propellant motor. Finally, the biglobal approach is
detailed, first with the governing equations and boundary
conditions, then with the numerical procedure. A special em-
phasis is made on the nonphysical boundary exhibited in the
present configuration. Finally numerical results are given in
comparison with the experimental ones.
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FIG. 2. Cylindrical coordinate system (r, 6,x). Flow is injected through the
cylindrical wall located at r=R with the injection velocity V;,;. The pipe is
bounded by a solid wall located at x=0.

Il. PHYSICAL MODEL

The description given below corresponds directly to the
flow existing in a cold-gas setup. The application to a live
motor is explained in the last part of this section.

A. Geometry

The configuration considered is a cylindrical pipe; the
base is circular of radius R. The coordinate system is the
usual cylindrical one (r, #,x) as indicated in Fig. 2. The pipe
is limited by a hermetic front wall located at x=0 and is
supposed to be very long in the direction of positive values
of x. Through the cylindrical wall, flow is injected and it is
assumed that the injection velocity denoted by Vjy; is uniform
(independent of x and 6), constant (independent of the time
t), and normal to the wall. In some conditions, e.g., in live
motors, the radius and the injection velocity vary with re-
spect to time, but due to the different involved time scales,
both quantities can be confidently assumed to be constant,
see Sec. Il E 3 for more details.

B. Governing equations

The flow is assumed to be an incompressible viscous
fluid, so that the dimensionless velocity vector
U=(U,,U,,U,) and the dimensionless pressure P satisfy the
standard Navier-Stokes equations

v-U=0
(1)

JU 1

—+VU-U+VP=—AU.

Jdt =— — — TRe —

In these equations the distances, the velocity components,
the time and the pressure have been made dimensionless
thanks to, respectively, the radius R, the wall injection veloc-
ity Vipj, R/ Viyj, and pViznj, where p is the flow density that is
assumed to be constant. It remains the Reynolds number Re
based on the injection velocity and the radius R. Associated
with this system (1), the following boundary conditions are
imposed:

Vx,0,t UJR,O,x,)=—1 U,R,0,x,t)=U,R,0,x,1)=0,
V6t Ulr,0,0,f)=Uyr,0,0,0)=ULr,6,0,)=0, (2)

Vx,6,t |U0,8,x,1)

P(0, 6,x,1)|bounded ,

b}

expressing the uniform normal injection, the no-slip condi-
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FIG. 3. Some streamlines corresponding to the Taylor-Culick basic flow (3).

tion at the front wall, and the regular behavior at the axis
r=0 where the cylindrical coordinate system is ill posed.

C. Mean flow

The previous system (1)+(2) is used for the stability
problem. Concerning the mean flow, there are three main
types of solution depending on possible approximations of
Egs. (1) and of the boundary conditions (2):

e (1)+(2): only CFD solutions can be found, as far as the
authors know.

e (1)+(2) without the no-slip condition at the head end
x=0: a self-similar solution has been found by Berman.”

* (1) inviscid (Euler equations)+(2) without the no-slip con-
dition at the head end x=0: an exact (self-similar) analyti-
cal solution exists,

1.
UY = - —gin—
" ro 2 ®) w1
(P :_T_;Sm 7 + Py,
T r

U)(rb) = X COS——
2

3)

with P, a constant. It is the so-called “Taylor” flow. Some
streamlines associated with the Taylor flow (3) are plotted in
Fig. 3. As expected, the streamlines come from the wall. The
figure also shows that for large values of x, the streamlines
become more or less parallel. In a region very close to the
wall, however, the flow is strongly nonparallel.

In Ref. 10, comparisons between the last two solutions
show that they are nearly identical for Re, typically greater
than 1000. The classical stability approach applied to these
two solutions leads of course to the same observation. Table
I provides numerical values obtained by the biglobal ap-
proach (see Sec. IIT) for a small Reynolds number using the
last two solutions of the mean flow. It clearly shows that the
choice of the mean flow weakly affects the stability results.
The higher the Reynolds number is, the lower the difference
is. In practice, the results are computed for Re of greater
than 1000 so that the effect is considered to be negligible.

Concerning the first type of solution (CFD), numerical
results obtained by Lupoglazov and Vuillot in Ref. 6 and by
others show that, except in a region very close to the head
end, the mean flow coincides with the other solutions (for
Re=1000). Actually, close to the head end, the problem is
not completely solved (as discussed in a private communica-
tion with Vuillot). Consequently, only the two self-similar
solutions can be confidently used for biglobal stability analy-
sis.
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TABLE I. Comparison between stability modes computed with the viscous and the inviscid self-similar mean flow.

R.=100 R,.=500 R.=1000
Inviscid Viscous Inviscid Viscous Inviscid Viscous
Mode 1 7.059-6.792i 7.114-6.812i 5.912-5.333i 5.921-5.340i 5.478-4.931i 5.482-4.934i
Mode 2 12.547-9.726i 12.607-9.723i 10.892-7.485i 10.906—7.488i 10.189-6.813i 10.196-6.815i
Mode 3 17.083-12.419i 17.134-12.421i 15.224-9.451i 15.240-9.453i 14.378-8.549i 14.386-8.551i
Mode 4 21.114-14.854i 21.140-14.871i 19.060-11.331; 19.075-11.336i 18.130-10.258i 18.139-10.261i

D. Classical linear stability theory

Based on the small perturbation technique, the standard
linear stability theory is now widespread in several fluid me-
chanics configurations; see Ref. 21 for a recent and detailed
review. More specifically, the case of the flow induced by
wall injection (or suction) has been investigated both for
small Reynolds numbers in Refs. 22 and 23 and for large
Reynolds numbers (the present case); see Ref. 24 for a re-
view. The principle is to assume that the actual flow consists
in the superposition of the considered basic flow, given by
(3) and identified by the superscript (b) and of an unknown
perturbation. This is imposed by

U=UP+u, P=P"+p, )

with u and p the velocity field and the pressure of the per-
turbation, being a priori general functions of (r,0,x,f). In
the linear approach the amplitudes of u and p are supposed to
be very small in comparison with the ones of U® and P
The superposition is introduced in the governing system
(1)+(2) and, with the linear assumption, nonlinear terms
with respect to perturbation quantities are neglected. The fol-
lowing systems are then obtained:

V.u=0

My ®) ! (52)
—+VUY . u+Vu.U"”+Vp=—>Au,

g = == — Re

Vx,0,t u(R,0,x,6)=0
Vr,0,t u(r,6,0,6)=0 (5b)
Vx,0,t |u(0,8,x,1)|,|p(0, 6,x,1)|bounded.

>

The zero perturbation is of course a solution. However, in
many cases, a nonzero solution exists; it is called an eigen-
mode. Roughly speaking, if the latter increases with respect
to time (it is assumed to have a very small amplitude at the
beginning in order to allow the linear treatment) the basic
flow is claimed linearly unstable whereas conversely if it
decreases the basic flow is claimed to be linearly stable. Usu-
ally in practice, only some of the eigenmodes are amplified
thus determining “dangerous” frequencies, wavelengths, or
other parameters related to the amplified eigenmodes.

Then, influenced by the mean flow velocity, which acts
as coefficient in the linear system (5a), the mathematical
form of the perturbation is prescribed. The approach pro-
posed in the present article is actually, to the best of our
knowledge, new for the Taylor flow with respect to this form
(see Sec. III).

The classical theory assumes that the mean flow is qua-
siparallel. This leads to the nonconsistent approach with the
usual normal mode form for any fluctuating quantity ¢:

q=qre et w= o, +ia;, (6)
with m an integer, k a real number (in the framework of the
temporal theory), and w a complex number, its real part cor-
responding to the circular frequency and its imaginary part to
the temporal growth rate. The amplitude function g is a func-
tion of r only. Introducing this particular normal mode form
into (5a) leads to a system of ordinary differential equations
(ODEs) with respect to r. The boundary conditions (5b) are
written in terms of the amplitude functions, except for the
no-slip condition at the head end, which cannot be satisfied.

As shown in Ref. 9, this approach is in very good agree-
ment with the measurements performed in a cold-gas setup
in the case of a duct with a rectangular section and for not
too small distances from the head end (x=0). The main result
is a range of frequencies that are highly (actually exponen-
tially) amplified with respect to x. Concerning the more rel-
evant axisymmetric configuration, the agreement is not very
good with the experimental results (see Ref. 10).

The shortcomings of this classical approach are as
follows:

e it iS not consistent;

e it can be applied only for large values of x independently
of what happens for other values of x and consequently the
boundary condition at x=0 in (5b) cannot be satisfied;

e it is less suitable in axisymmetric configurations than in
planar cases.

In order to overcome these difficulties, a biglobal stabil-
ity approach (consistent) is proposed and will be detailed in
Sec. III. The remaining part of the present section is devoted
to the description of two different experimental setups for the
subsequent comparisons that will be done at the end of the
present paper.

E. Experimental setups
1. The VALDO cold-gas facility

Experimental investigations have been carried out using
the so-called VECLA setup for which the section is rectan-
gular; some results can be found in Ref. 9. VALDO is based
on the same principle: cold gas is injected through a porous
wall, but has a circular section, which is more realistic for
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air injection air injection

front wall

exit section

—~

porous wall
grid air injection

FIG. 4. Schematic view of the VALDO setup. Air is injected in the three (two, three, or four) elements; a grid aims to spread out the injected air. Finally air

is injected in the cavity through a poral.

comparisons with real solid rocket motors. Similar setups
have been previously used (see Refs. 11 and 25 or Ref. 26).

VALDO is located at ONERA in Palaiseau; the experi-
ments are carried out by G. Avalon. A detailed description of
the setup may be found in Ref. 27; only the main character-
istics are given below. There are four identical elements
(only one is equipped with a pressure probe and a hot wire),
the length of each being 168 mm and the inside diameter 60
mm. VALDO may operate with two, three, or four elements,
leading to a total length of 336, 504, or 672 mm. The struc-
ture of the interior wall is a poral (porosity 2 wm in the
present case). Air is injected at three different azimuthal
angles for each element used and is assumed to be spread out
uniformly with respect to the axial direction and the azi-
muthal one thanks to a grid placed between the external
structure and the poral (see Fig. 4). Finally the air is injected
inside the cavity at the injection velocity Vj,; with a direction
assumed to be normal to the wall and with a norm assumed
to be constant in space.

The exit section can be either free (air goes directly in
the atmosphere) or equipped with a (sonic) throat. The injec-
tion velocity can be varied directly in the first case and in the
second case by a needle, placed in the middle of the throat,
which has a varying section and which can be moved more
or less in the axial direction. Changing the critical section
forces a change of the mass flow rate and thus of the injec-
tion velocity. Typical values of the injection velocity and the
corresponding Reynolds number Re are given in Table II.

In this cold-gas facility, direct measurements in the flow
are possible; they are performed with a hot wire. When a
throat is mounted at the exit section, only very few positions
in x are available for this measurement, each one correspond-
ing to one position of the equipped element. When the exit
section is free, a long shaft, carrying the hot wire probe, is
introduced through the exit and may be moved all along the
pipe. In addition, the instantaneous pressure is measured at
the front wall and close to the exit section. The data acqui-
sition is done during 1 s at a rate of 4000 points per second.
The signal is then filtered between 50 Hz and 2000 Hz. Fi-

TABLE II. Typical operating conditions using VALDO, air is at ambient
conditions so that the kinematic viscosity is about v=15X 107 m?s~!. The
radius of the pipe is R=30 mm.

Free exit section With a throat

Viyi=0.84 ms™, R,=1680
Vipi=1.05 ms™, R,=2100

Vi=0.55 ms™!, R,=1100

nally a spectral analysis is performed using the spectrogram
method applied to the 2048 first points of each acquisition.
This procedure leads to the FFT of the fluctuating velocity
and pressure, as it will be presented below.

2. The reduced scale solid rocket motors LP9

As explained in Sec. I, several sources are mentioned as
being responsible for the thrust oscillations observed in large
solid rocket motors. In order to prove the key role played by
the hydrodynamic instability considered in the present paper,
simple motors have been investigated for some years at
ONERA Le Fauga-Mauzac centre by M. Prévost and his col-
leagues (see Ref. 28). Numerous configurations have been
investigated. In this paper only the so-called LP9-15 will be
analyzed. It corresponds to a very simplified geometry of the
European launcher Ariane 5 boosters, the scale being 1/35.
A schematic view is given in Fig. 5. In this configuration,
there is a free cavity upstream close to the front wall and
there are two cylindrical blocks of propellant. There is no
cavity in the vicinity of the nozzle at the exit. On the other
hand, there is a small cavity between the two blocks and it
must be noted that a varnish is put on the lateral surfaces of
the propellant block so that it may be expected that combus-
tion does not occur on this lateral surface. The combustion
generates a flow with a small injection velocity normal to the
wall (close to 1 m/s). The velocity components of the mean
flow are very close to the ones given in (3), as demonstrated
by different numerical simulations; see, e.g., Refs. 4 and 29.
In addition, these computations show that, except in a zone
very close to the propellant surface, the pressure and the
temperature in the cavity are roughly uniform. This explains
why there is no real coupling between the dynamics and the
energy equation. The effects of laminar premixed flame os-
cillations are limited to a thin region above the burning sur-
face as shown in Refs. 30 and 31. The flow velocity is very
close to the incompressible solution and the stability analysis
can also be performed using the incompressible approxima-
tion.

At the beginning of the firing, the radius of the cavity is
20 mm; at the end, which occurs 4 s later, the radius is 42.5
mm.

3. About the unsteady effects

Two types of experiments have been performed: one
cold-gas set up (VALDO) with a fixed geometry and a small
scale solid propellant motor (LP9). As explained above, the
first setup has been used either in static conditions (fixed
injection velocity) or in dynamic conditions (variable injec-
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FIG. 5. Schematic view of the LP9 setup for the firing 15. The sizes are in mm.

tion velocity), whereas the geometry in a live motor is nec-
essarily unsteady (decrease of the propellant quantity inside
the cavity). From a theoretical point of view an exponential
dependence in exp(—iwt) for the perturbation in a linear ap-
proach is justified in static conditions, when the geometry
and the mean flow are really steady.

Concerning the dynamic experiments, this exponential
dependence may appear questionable. In fact, as it has been
shown in Ref. 32, the time scale that is associated with the
increase of the geometry in a live motor (small scale and full
scale) is larger than the time scale associated with the first
longitudinal acoustic mode (small scale motor). As men-
tioned above, 4 s corresponds to an increase of nearly 20
mm, so that a 1% increase of the geometry needs 0.04 s,
which is significantly larger than the 1/700 s associated with
the time scale of the acoustic mode (see Fig. 1). The same is
true for the injection velocity variation in VALDO. The in-
crease of the injection velocity from 0.6 to 2 m/s is per-
formed in about 30 s. Thus, a 1% increase of the injection
velocity takes 0.43 s, which is very slow compared to the
characteristic time (1/400 s) of the main phenomenon (de-
tailed in Sec. III D; see Fig. 12).

Thus, in terms of a regular WKB approach, the exponen-
tial dependence for the fluctuation corresponds to the leading
order terms. In Ref. 32 one additional term has been calcu-
lated (in the framework of the nonconsistent approach),
whose influence can be confidently neglected. In the follow-
ing the basic flow will be considered as steady even for the
(weakly) unsteady experiments.

lll. BIGLOBAL STABILITY ANALYSIS
A. Eigenvalue problem

The goal of this section is to describe the biglobal ap-
proach used to solve the problem composed by the linearized
Navier-Stokes (LNS) system (5a) and by the boundary con-
ditions (5b).

1. Differential equations

As explained above (see Fig. 3), the Taylor flow is non-
parallel. The idea of the proposed biglobal stability approach
is to perform an analysis that is as general as possible for a
fully nonparallel basic flow. As the coefficients of the LNS
system do not depend on ¢ and 6, any perturbation
q=(u,,ug,u,,p) can be searched with the following form:

q= é(x,r)ei(mﬁ—wt)m eNweC, (7)

where m stands for the azimuthal wave number. The real part
w, of w is the dimensionless circular frequency and the
imaginary part w; is the temporal growth rate. The classical

approach (6) has an explicit x dependence (in relation with
the parallel assumption), whereas the proposed one does not
assume anything for the x dependence.

This study is limited to the axisymmetric modes given
by m=0 and so, in the following, one mode will be com-
pletely identified by the complex number w. If m=0, and so
iiy=0, a streamfunction can be defined such that

PR (8)

2
ar’ r ox

L1

iy=-

-

Then the LNS system (5a) leads for the differential equations
to a scalar equation written for the streamfunction:

1w al(2d) (1) ﬁi[ﬁ(ﬂﬂ
+(9r(9r ror\ dx

_ 2
r dr  ox
ZXARVARY, A1 R
—raxar[ ( )]- c(cd)=ivLd, 9)

}’2

Jx or
ror\r dr Re

is a linear operator and WV is a streamfunction of the mean
flow. Relation (9) is a partial differential equation (PDE) of
order four in r and x and must be solved in a domain ) in the
(x,r) plane. The chosen domain is Q=[0,X,]X[0, 1], where
X, stands for an artificial exit section. This equation leads to
an elliptic problem and will be associated with boundary
conditions on all the boundaries.

2. Boundary conditions

On the front wall x=0 and on the porous wall r=1, the
no-slip conditions written in (5b) are imposed. Using (8), the
conditions are

2
ox

d¢

(0,r)=0, &0,r)=0; D=0, H(x,1)=0,

(10)

choosing an integration constant equal to zero. There are
different ways to impose the last boundary condition of (5b)
on the axis r=0. First, one can use a Taylor series expansion
of about zero. Second, given the symmetry of the problem,
one can show that ¢ has to be an even function with respect
to r that vanishes on the axis. The two approaches are
equivalent and lead finally to
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It remains a condition to be imposed at the exit x=X,. The
chosen exit condition is simply a linear extrapolation in the
streamwise direction x. If N, is the number of points used to
discretize the domain () in the streamwise direction (e.g.,
XNX:XL,) then the condition can be written as

Xy =Xy o

A N, -
\v4 X , - X Xy _ ,
ro( N, r) XNX—I _XNX—2¢( N1 r)

XN -1~ XN ”
+ Xy _o,7). (12)
XNx_l - XNX_Z )

In Sec. III B some comments are given about the validity of
such a condition.

Once the problem is well posed, a spectral collocation
method (see Ref. 33) based on the Chebyschev polynomials
is used to solve numerically the problem (9)+(10)+(11)
+(12). Each function of (i,, g, i,,p) is decomposed on the
base of the Chebyschev polynomials for the two variables x
and r. So the linear system can be written as an algebraic
system defining a generalized eigenvalue problem:

Ad=wBd, (13)

where i) represents an arrangement of the discretized points
of the streamfunction ¢. Now, the difficulty consists in find-
ing the eigenvalues and eigenvectors of (13). In spite of the
spectral accuracy, which allows to use only a low number of
points in the domain, the matrices size remains large to en-
sure the convergence (basically, of the order of 10000
X 10 000). It is not possible to get the entire spectrum of
(13), and so the well-known Arnoldi procedure’ (where the
size of Krylov subspaces is equal to 200) is used, providing
only a few eigenvalues around a given target. The last step
consists in identifying the physical eigenvalues among those
coming from the computation and further focusing on the
most amplified ones (largest values of w;). Fortunately, the
interesting eigenvalues seem to be isolated from the others.

B. Some comments on the questionable boundary
conditions

Some boundary conditions are questionable: the exit
condition, the head end boundary condition, and the choice
of the integration constant for é.

There is no physical condition that can be imposed in
x=X,. Nevertheless, choosing an appropriate exit condition
is crucial to make the calculation feasible and relevant. It is
expected that for a sufficiently long domain (), the eigenval-
ues and the corresponding eigenfunctions are independent of
the value of X, and of the condition imposed at this exit
section.

Many kinds of conditions have been tried, but just a few
of them fulfill the previous requirement. For instance, a
buffer domain has been added where the elliptic original
problem has been turned into a parabolic one. This technique
leads to unsatisfying results. Another failure arises by forcing
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FIG. 6. Contours of |¢,| for the mode w,=20.83, Re=2100, and for three
calculations: X,=4, 6, and 8. X,=4 corresponds to the (colored) thick lines,
X,=6 to the dashed lines, and X,=8 to the thin lines. In order to see the
different details, the aspect ratio is not respected.

an exponential x dependence as defined in the classical sta-
bility approach (6). The tried condition is (J¢/dx)—ikX,d
=0, with k the wave number computed for the abscissa X,
and for a given complex number .

Up to now, the only kind of condition that gives satis-
factory results is the polynomial extrapolation, and particu-
larly, the linear extrapolation written in (12). Previously, this
condition has been successfully applied for nonparallel
flows; see the pioneering study by Lin and Malik'® and by
Theofilis* for a recent and complete review on these flows.
In the present case with this condition, the results are inde-
pendent of the value of X, as long as the eigenfunctions are
decaying in the streamwise direction or are slowly growing.
This arises for the first modes w, lower than about 25 (de-
pending on the Reynolds number Re; here Re=2100). Let
us give an example. Three values of X, have been tested : 4,
6, and 8 for a Reynolds number equal to 2100, for 120 points
in x and 120 in r. The eigenvalue w,=20.83 has been found
to be independent of X,. Furthermore, looking at the absolute
value of the real part of the corresponding streamfunction
|é5,| (see Fig. 6), it seems that the different contours are su-
perimposed, except in a region very close to the chosen exit.
For large values of w,, as the problem is elliptic and as the
eigenfunctions are exponentially growing with respect to X,
the linear extrapolation modifies the eigenfunction in the
neighborhood of X,. The longitudinal growth is only locally
changed around the exit X, due to the linear extrapolation.
Consequently, the eigenvalues w are weakly affected. This
nonzero dependence is not observed in the swept attachment
line case; see Refs. 16 and 35. However, in this case, the
streamwise growth is polynomial. The local modification of
the longitudinal growth due to the linear extrapolation is
weaker than in the present case where the amplification is
exponential. Finally, the modifications on the values of w are
sufficiently weak to be confident with the independence of
the truncated domain length. (A 40% increase of X, makes
w, decrease by less than 1%.) Thus, due to the observed
independence of the artificial boundary condition, relation
(12) has been used for all the following results.

The second point concerns the head end boundary con-
dition. This problem has two different aspects that deal with
the main flow and with the calculated perturbation itself. The
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FIG. 7. Eigenvalue spectrum for Re=2100, Xe=4, and three different tar-
gets. All the eigenvalues obtained with a given target are represented by the
same symbol. There is a perfect overlapping between the three
computations.

first aspect has been previously discussed (see Sec. II C).
More details are, however, given below. The two self-similar
solutions do not satisfy the no-slip condition at x=0 (the
radial velocity component is not zero) whereas it does at the
injection wall. CFD laminar Navier-Stokes calculations™®
show that the Taylor profile is recovered in a region very
close to the head end (which depends on the Reynolds num-
ber; x=0.1 for practical applications). As the mean flow com-
ponents are the coefficients of the system (5a), only a few
matrix coefficients of 4 would be weakly changed if the
no-slip condition at x=0 was taken into account in the mean
flow. Thus, the eigenvalues and the corresponding eigenfunc-
tions can be assumed to be slightly affected by this choice of
mean flow.

Now that the Taylor solution is chosen to be the mean
flow, it could be interesting to look at a perturbation that
satisfies the same set of boundary conditions, in particular, a
perturbation that is symmetric with respect to x as is the
Taylor flow. In that case the problem can be solved with two
different approaches (see Appendix ): using an ODE-based
approach or the biglobal approach described above. The re-
sults are the same. This validates our biglobal stability code.
However, modifying a boundary condition for the perturba-
tion makes the problem completely different. The obtained
solutions are not observed in the experiments, and it can be
concluded that the no-slip condition at the head end for the
perturbation is a crucial condition.

Finally, it appears that the no-slip condition at the head
end plays a major role for the computation of the stability
results only because of its effect on the calculated perturba-
tion but (probably) not because of its effect on the mean
flow.

Another questionable point related to the boundary con-
ditions is the condition ¢=0 on the walls. Actually & could
be any constant é&o on the walls. Nevertheless, our numerical

procedure is more efficient by choosing ¢,=0. However, an-

Phys. Fluids 18, 014103 (2006)

1.4

1.3 ——— - x/R=5.60 & 1/R=0.92 \
x/R=7.93 & 1/R=0.92

1.2 — — —— x/R=8.93 & r/R=0.92

1.1 x/R=8.93 & r/R=0.89
x/R=8.93 & r/R=0.86

1 ....................... Thcoretical modes

0.9

0.8

0.7

velocity magnitude (m/s)

S e
- N W Rr Lo

iy
“,-J?\—&k s
== 1
100 200 300
frequency (Hz)

FIG. 8. Comparison between the measured frequencies in VALDO corre-
sponding to five different positions of the hot wire and the dimensionalized
theoretical modes.

other formulation has been introduced. It consists in writing
the system with two variables U= d/ gr and V=09¢/ dx sat-
isfying Eq. (9) and a coupling equation that is just the com-
mutativity of the partial derivatives with respect to r and x.
This second system gives the same results as the previous
formulation. Therefore, in the following the formulation used
to perform the calculations will not be mentioned.

C. Results

In the following comparisons with the experimental re-
sults, the computed circular frequencies w, will be turned
into dimensionalized frequencies using the formula

Vin'
f=3 %

. 14
R (14)

There is thus a linear relationship between f and w, with a
coefficient equal to Vi,;/27R.

This section is divided into two parts, whether Vj,; and R
are fixed in time or not. First, static results will be explored
and compared to the measurements issued from the VALDO
facility. They correspond to a constant coefficient in the pre-
vious relationship (14). Conversely, associated with a vari-
able coefficient, a dynamic study will be performed using the
different experimental results coming from VALDO and LP9
setups.

1. Static results

The results (eigenvalues and eigenfunctions) depend on
the value of the Reynolds number Re only. This Reynolds
number Re is based on the radius R and the velocity injec-
tion Vi, Thus, Re is a constant and the whole set of eigen-
values, called a spectrum, is fixed. A typical spectrum, ob-
tained for Re=2100, is shown in Fig. 7 in the (,, w;) plane.
It has been obtained with three different targets in the Ar-
noldi procedure. There are two remarkable points for this
spectrum.
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FIG. 9. Velocity field and rms velocity filled contours of the eigenfunction

Re=2100.

First, the spectrum exhibits discrete eigenvalues (at least
for the most amplified ones). Thus, according to the present
biglobal approach only a discrete set of values of the circular
frequency o, of the perturbation can be expected in the con-
sidered flow. This is a strong difference between the biglobal
approach (which will be referred to as 2D) and the classical
monodimensional theory (referred to as 1D) that exhibits a
continuous spectrum. It also implies that the frequency sig-
nature of the perturbation remains the same in any spatial
location (x,7) of the domain ().

Figure 8 shows a FFT transform of five measured rms
velocity signals. Each of them comes from a different spatial
location (x,7) of the hot wire. As indicated in the legend,
three values of x at a given radial position r and three values
of r at a given distance x are considered. In addition to these
five experimental results, the discrete calculated frequencies
are indicated by vertical dashed lines. For this comparison,
the injection velocity is Vj,;=1.05 m/s, which yields the
Reynolds number Re=2100 (the radius is 30 mm) used for
the stability computation. This figure shows first that the
measured frequencies are organized as discrete thick peaks
that are independent of x and r. Furthermore, these peaks
belong to the set of the 2D modes, and the matching is very

associated to the mode w,=63.576 (f=360 Hz) computed for X,=10 and

satisfactory. The pressure measured at the front wall and at
the exit section exhibits exactly the same peaks. With this 2D
approach, it is thus now possible to predict the set of fre-
quencies that can develop in the Taylor flow.

Second, all the eigenvalues have a negative imaginary
part w;, which means that all the associated modes are tem-
porally stable. However, some of the associated eigenfunc-
tions are spatially growing. In particular, for R,=2100 and
w, of greater than 25, all the eigenfunctions are exponentially
growing in the streamwise direction x. For one mode, there
are two opposite effects. On one hand, the perturbation am-
plitude is decreasing when time goes on. On the other hand,
there is an exponential growth in the streamwise direction.
However, due to the temporal damping, a continuous exter-
nal excitation must exist to explain the existing measured
peaks. In this sense and according to the present stability
approach, the VSP cannot be an intrinsic instability, but an
extrinsic one.

Let us give some comments on the numerical conver-
gence of the presented results for enough collocation points
in both directions. On the one hand, the values of the circular
frequencies w, are weakly dependent on X,. On the other
hand, the values of the temporal growth rates w; are slowly
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FIG. 10. Radial cut of |4, and |4, for the two theories (x=8.93R
=238 mm, w!°=64, w?°=63.576, Re=2100). The experimental values
are plotted as symbols.

increasing with increasing values of X,. However, they re-
main always negative. In the following only the values of the
frequencies and the sign of the growth rate are taken into
account.

Concerning the eigenfunctions, a remarkable character-
istic is that the modes behave as progressive 2D waves for
large values of x, typically for x=5. When adding the time
dependence e~ to the perturbation amplitude ¢(x,r), waves
can be observed which move along the streamlines of
the mean flow. This is roughly illustrated by Figs. 9(a) and
9(b). They represent the velocity fields of the mode
,=63.576 (f=360 Hz) computed with X,=10 and for
Re=2100. Two instants are plotted. For the sake of clarity,
the velocity fields are drawn artificially using the same size
for all the vectors, whereas the rms velocity contours give
access to the longitudinal exponential growth of the velocity
perturbation field (the darkest, the most amplified). For
8 <x <10 and near r=1, one recognizes the typical shape of
the parietal vortex shedding (VSP) that has been computed
with different Navier-Stokes solvers (see, for instance, Ref.
6). Between the two instances one can see the progression of
the wave front that is nearly plane for x=15. For small values
of x, there is a complex organization of the velocity field. It
is important to note that in the 1D theory regarding the x
direction, the perturbation is searched with a wave depen-
dence expressed by Eq. (6), whereas in the 2D approach the
obtained progressive waves are only a consequence of the
computation.

For large values of x, the radial shape of the perturbation
is expected to be close to that of the 1D theory given that the
mean flow is nearly parallel. A radial cut at x=8.93 of the
longitudinal and radial velocity magnitude is plotted on Fig.
10 for both the 1D and the 2D theories. Both approaches
provide eigenmodes with an arbitrary amplitude (linear ap-
proach). For comparison, a normalization is required. In Fig.
10, the magnitude of |ii,| for both approaches is adjusted in
order to match the measured value at r=0.92. The radial
evolution of the velocities is roughly the same for the two
approaches, especially near the injection wall. This result
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FIG. 11. Comparison of the longitudinal evolution of the rms velocity be-
tween the VALDO measurements, the 1D theory, and the 2D approach
(r=0.92R=27.7 mm, f=360 Hz, which corresponds to the 2D mode
®,=63.576, V;,;=1.05 m/s, that is, Re=2100). The filled symbols repre-
sent the points of Fig. 8 for r=0.92R.

confirms the previous conclusion: the 2D mode behaves like
a 1D mode for large values of x. However, this is true for a
given frequency. Let us recall that the 1D approach provides
a continuous range of frequencies while the 2D approach
only provides a discrete set.

Finally, the longitudinal evolution of the perturbations is
explored. Figure 11 gives an example at r=0.92 for the two
approaches in comparison to the available experimental re-
sults. The 2D computation is performed for X,=10 and again
for v,=63.576 and Re=2100. The arbitrary theoretical am-
plitudes of the 2D and 1D results are chosen in order to
coincide with the measuring point x=8.93. The axial growth
rate is well predicted by the 2D theory, especially for large
values of x, whereas the 1D theory gives better results for
small values of x. Nevertheless, for small values of x, the rms
measured signal for one specific frequency is weak compared
to the surrounding noise. As mentioned before, the perturba-
tion exhibits an exponential growth with respect to x for
large frequencies (w,>25). Thus the present computation
has taken into account several orders of magnitude for the
perturbation. There is a 10° factor between the magnitude of
the velocity near x=0 and at the exit X,=10.

To summarize the static results, the biglobal stability ap-
proach predicts a discrete set of possible frequencies for the
eigenmodes. The measured frequencies in VALDO belong to
this set. Since all the eigenmodes are temporally damped, a
continuous external excitation (added to the exponential
growth in x) may explain the fact that some of these modes
emerge from the surrounding noise. (It is also possible that a
transient growth is responsible of this merging. However, the
authors believe, because of the following results, that cou-
pling mechanisms play a major role in the merging of the
biglobal modes. Further research will hopefully give more
information on this point.)
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TABLE III. Range of values of R, Vi, and Re for the two considered
setups.

Setup
VALDO LP9
R (mm) constant=30 24.4-42.5
Vini (m/s) 0.6-2 2.60-1.77
Re 1200-4000 3750-6375

D. Dynamic analysis

In this part, the effects of time-dependent values of Vi
and/or R are analyzed in order to have a better understanding
of the frequency paths that arise in motors. The time depen-
dence of Vj,; and/or R induces of course a time dependence
of the Reynolds number Re. As explained before and thanks
to the different time scales, the linear stability equation sys-
tem is assumed to remain valid at each value of the time.
Furthermore, as it has been checked’ for the 1D approach,
the stability results are not very sensitive to a change of the
Reynolds number if the latter is large enough (greater than
1000). This is also valid for the 2D approach. Thus, the 2D
results are computed from one particular relevant Reynolds
number.

Table III summarizes the different ranges of values for
R, Vinj, and Re in the following explored cases. For the LP9
setup, the measurements start once the pressure is large
enough. It means that there is a difference between the value
R=20 mm at the beginning of the firing (see Fig. 5) and the
first value R=24.4 mm used for the measurements.

1. Comparisons with VALDO results

In the VALDO facility, only Vj,; can vary. Figure 12
presents spectrograms (black spots) of the rms velocity fluc-
tuation. Two cases can be distinguished: whether Vi is in-
creasing (case up) on the left-hand side or decreasing (case
down) on the right-hand side. In both cases, the calculated
modes are plotted as thin lines and draw a network of lines
due to the Vj,; dependence given by relationship (14). The
experimental values seem to be organized in agreement with
the discrete 2D modes. The most amplified frequency seems
to follow the well identified lines of the theoretical network.

However, VALDO results exhibit a little bending for
large values of V;,. This bending is not due to a Reynolds
effect but may have two possible origins. First, the porous
wall of the VALDO setup has not been designed to work for
such large values of V;,; and this may affect the results. Sec-
ond, the use of a slide window to perform the FFT transform
induces a little shift that may also explain the observed re-
sults. Finally, in spite of the weak bending, the measured
amplified frequencies are clearly linearly varying with re-
spect to Vi, as expected by the present model.

It is interesting to plot both previous cases in the same
figure. This is done in Fig. 13, which presents for a fre-
quency of around 500 Hz the case up in light gray and the
case down in dark gray. Of course, as was shown before, the
different frequencies belong to the same network but there is
hysteresis. It means that the most amplified frequency at a
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FIG. 12. VALDO frequencies evolution with respect to Vjy;. The lines cor-
respond to the evolution of the 2D theoretical modes. Case up on the left,
case down on the right.

given injection velocity is not intrinsic. This behavior is co-
herent with the extrinsic nature of the 2D instability results.
We think that in this case (no throat, free exit section) the
continuous external source of excitation can be the intrinsic
instability (Kelvin-Helmholtz type) of the jet flow that devel-
ops at the exit of VALDO. The frequencies involved depend
on the jet velocity, which is itself related to the injection
velocity Vi, Other configurations tested in VALDO
equipped with a throat exhibit amplified frequencies that fol-
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FIG. 13. View of an hysteresis while superimposing the VALDO frequen-
cies evolution for both cases up and down.

low once again our theoretical network of 2D modes, but in
this case the frequencies associated with the largest ampli-
tudes remain around the fundamental acoustic mode (simi-
larly to live motor experiments). Thus, the external source of
excitation is assumed to be the acoustic modes.

2. Comparisons with LP9 results

Here, the “injection” velocity (actually gas velocity at
the propellant surface) Vi, and the chamber radius R vary
during the firing. Thanks to the static pressure signal in the
reduced scale motor, it is possible to access the evolution of
R and other physical quantities.37 Moreover, from the un-
steady fluctuating pressure signal, a Hilbert transform allows
to know the time evolution of the most amplified frequency.
As explained in Sec. I (see Fig. 1), this evolution exhibits
continuous paths separated by abrupt jumps. At the begin-
ning of the firing, there are no frequency paths and it seems
that the most amplified frequency has no particular organiza-
tion. In those first instances, the ratio R/L, where L stands
for the chamber length, is very small. Thus, the flow is ex-
pected to become turbulent soon in the streamwise direction.
As R increases, the main flow becomes laminar in the major
part of the pipe, and this allows the growth of some frequen-
cies. For t>2.5 s, the frequency paths appear. They occur
around the first acoustic mode of the pipe up to the end of the
firing.

The procedure is similar to the one explained in the
VALDO case. For an average value of the Reynolds number
(Re=5000), the biglobal stability approach is brought into
play, leading to a discrete set of w,. Then, thanks to (14), the
physical frequencies are calculated at each time and are plot-
ted as a network in the same graph of Fig. 1. This is done in
Fig 14 with the radius R as an x coordinate instead of the
time. At the end of the firing, the propellant is almost fully
burned, and the velocity injection has a faster time evolution
than the radius R. This explains the particular shape to the
2D mode network at the end.
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FIG. 14. LP9-15 frequencies evolution with respect to R. The lines corre-
spond to the evolution of the 2D theoretical modes. The first longitudinal
acoustic mode is represented as a dashed line.

In spite of the complexity of the physical mechanism
that exists in the reduced scale motor LP9, it appears that the
observed pressure oscillations follow very well the 2D
modes. This confirms the key role of V;,/R in relationship
(14) for the observed paths and the discrete nondimensional-
ized eigenvalues w, computed by the biglobal approach. Oth-
erwise, the external source of excitation is clearly the funda-
mental acoustic mode in the present LP9 case. This is widely
confirmed in Ref. 5.

The good agreement given by Fig. 14 is a major result
that leads to, as far as we know, a new possible understand-
ing of the thrust oscillations exhibited by large solid rocket
motors.

IV. SUMMARY

This paper is devoted to a biglobal stability analysis of a
particular unbounded nonparallel steady flow. Taking into ac-
count the nonparallel effects on the perturbation form leads
to a major modification of the stability results compared to
the classical approach. The eigenvalue problem exhibits a
discrete spectrum of temporally stable frequencies. A con-
tinuous external source of excitation may explain the merg-
ing of these stable modes. This sheds light in on the appear-
ance of the pressure oscillations that are observed in reduced
scale motors, whether they work with cold gas or with solid
propellant. Looking at the results of the different setups, it is
clear that the pressure oscillations have a time evolution that
is a function of V;,;/R. Even if at that time the predicted
modes are not fully resolved, it seems that the present 2D
approach is able to determine the main amplified frequencies
that appear in solid rocket motors. It would also be interest-
ing to make theoretical investigations to understand the com-
plex interaction that may exist between the computational
modes and the external source of excitation, for instance, the
longitudinal acoustic modes.
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TABLE IV. Comparison between the first five eigenvalues given by the ODE-based approach and by the

Biglobal linear stability analysis

biglobal approach for linearly growing modes.

Phys. Fluids 18, 014103 (2006)

ODE-based approach

Biglobal approach

—0.000 000 02-7.989 816 73i
0.819 404 69-7.946 951 10i
1.585 774 34-7.865 700 79i
2.338 48524-7.779 918 82i
3.069 852 16—7.696 636 36i

—0.000 000 01-7.974 798 01i
0.723 703 79-7.944 533 15i
1.411 743 50-7.882 614 27i
2.084 559 27-7.814 919 52i
2.741 766 38—7.747 904 56i

—0.000 001 36—7.989 816 41i
0.819 405 11-7.946 953 56i
1.585 776 26—7.865 702 15i
2.338 489 11-7.779 921 16i
3.069 853 02-7.696 635 17i

—0.000 006 23-7.974 783 82i
0.723 702 63—-7.944 541 35i
1.411 731 81-7.882 611 50i
2.084 571 76—7.814 925 05i
2.741 749 55-7.747 909 12i

N,,N,+1
Mode 1 101, 102
Mode 2 101, 102
Mode 3 101, 102
Mode 4 101, 102
Mode 5 101, 102
Mode 1 151, 152
Mode 2 151, 152
Mode 3 151, 152
Mode 4 151, 152
Mode 5 151, 152
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APPENDIX: SYMMETRIC BOUNDARY CONDITION
AT THE HEAD END

The Taylor flow can be seen as a symmetric solution
with respect to x. At x=0, the longitudinal velocity compo-
nent Uib) is zero, whereas the radial velocity component Uib)
is not. Thus, it seems to be interesting to look at disturbances
that satisfy the same set of boundary conditions, in particular
at the head end. In that case, it appears that linear solutions
with respect to x may exist, as is the case with the well-
known Gortler-Himmerlin modes of the swept attachment
line boundary layer.'"® The PDE system (5a) associated to
these boundary conditions can be then reduced to a simple
ODE system with respect to r. Let W=xF(r) and
d=xf(r)e”™" be respectively a streamfunction of the Taylor
flow and one of the unknown perturbation. Then the system
can be written as follows:

%N(F)L(f) + %N(f)L(F) - I_:dL_(f) _ fdL(F)

dr r dr
. df
=ioL(f)f(1)=0, ;(1)=0,f(0)=0 (A1)
where
d 1d
L=—-——
dr-  rdr
and
d 2Id
=— 4 —
dr r

(Id is the identity function). Using a spectral collocation
method, it is easy to compute the eigenvalue w of (Al).

On the other hand, the biglobal approach has been also
used to solve the PDE problem. Instead of imposing the no-
slip condition, a symmetric condition is applied at x=0. It
means that the first two conditions of (10) are changed into

&Z—f(o,r) =0, $(0,r)=0.

ox

Many computations have been done with different values of
parameters. For a given number of points in the radial direc-
tion N,, different values of the exit abscissa (X,=4, 5, 6, 8,
10) and of the number of points in the streamwise direction
(N,=5, 10, 15, 20) have been tested. Except for spurious
modes, all these computations give exactly the same set of
eigenvalues (the observed maximum difference is about
0.0001 on the absolute value of an eigenvalue), associated
with linearly growing eigenfunctions. The results of the two
codes are compared in Table IV for different values of N,.
The first five modes are given in this table. As the eigenval-
ues are symmetric with respect to the imaginary axis, only
the eigenvalues with ®,=0 are written. It is interesting to
note that the results in both codes are depend on the parity of
N.,. To have access to the whole set of eigenvalues, two com-
putations must be done for N, and N,+1.

In the framework of this study, these results do not
present a physical interest. There are no experiments, as far
as the authors know, that exhibited linear growing modes.
For this reason, no details on the structure of the eigenvalue
set and on the eigenfunctions will be given here. However, it
is a good test case that enables to validate the computational
code used for the biglobal approach. Moreover, it proves that
the no-slip condition at x=0 is necessary to obtain stability
results which are in agreement with the experiments.
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