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Channel flow induced by wall injection of fluid and particles
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The Taylor flow is the laminar single-phase flow induced by gas injection through porous walls, and
is assumed to represent the flow inside solid propellant motors. Such a flow is intrinsically unstable,
and the generated instabilities are probably responsible for the thrust oscillations observed in the
aforesaid motors. However particles are embedded in the propellants usually used, and are released
in the fluid by the lateral walls during the combustion, so that there are two heterogeneous phases
in the flow. The purpose of this paper is to study the influence of these particles on stability by
comparison with stability results from the single-phase studies, in a plane two-dimensional
configuration. The particles are supposed to be chemically inert and of a uniform size. In order to
carry out a linear stability study for this flow modified by the presence of particles, the mean particle
velocity field is first determined, assuming that only the gas exerts forces on the particles. This field
is sought in a self-similar form, which imposes a limit on the size of the particles. However, the
particle mass concentration cannot be obtained in a self-similar form, but can only be described by
a partial differential equation. The mean flow characteristics being determined, the spectrum of the
discretized linear stability operator shows first that particle addition does not trigger any new
‘‘dangerous’’ modes compared with the single-phase flow case. It also shows that the most amplified
mode in the case of the single-phase flow remains the most amplified mode in the case of the
two-phase flow. Moreover, the addition of particles acts continuously upon stability results,
behaving linearly with respect to the particle mass concentration when the latter is small. The linear
correction to the monophasic mode, as well as the evolution of the modes with weak values of the
particle mass concentration at the wall, are shown to be proportional to the ejection velocity of the
particles. Then, the evolution of the eigenmodes from a given injection speed of the particles to
another one is deduced by affinity, all other parameters being fixed. With a fixed Stokes number,
stability results for a finite Reynolds number and results for the inviscid flow bring together when
augmenting the particle mass concentration at the wall. Therefore, by knowing single-phase flow
results and the evolution of stability characteristics of the two-phase flow in the inviscid case, it is
easy to determine whether particle-laden Taylor flow is more or less stable than the monophasic
Taylor flow for large particle mass concentration. ©2003 American Institute of Physics.
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I. INTRODUCTION

Thrust of large solid propellant motors may exhibit o
cillations whose frequency can be related to the longitud
acoustic mode, though the flow inside the booster is p
dicted to be stable with conventional methods such as
acoustic balance. Varapaev and Yagodkin1 and Casaliset al.2

have shown that the flow induced by incompressible fl
injection through porous walls of a channel is intrinsica
linearly unstable. The analytical laminar solution in a se
similar form of such a motion has been calculated by Tay3

in the case of an inviscid flow, the so-called ‘‘Taylor flow
Viscosity is then easily introduced via the Reynolds num
R, leading to a nonanalytical solution, but with the sam
similar form as the one of the Taylor flow. The solution o
tained is assumed to be representative of the flow in the h
of a booster~upstream part! in the case of a purely monopha
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sic flow. The large curvature of the streamlines at the w
seems to be responsible for the instability of the flow,4 so
that this particular instability is called ‘‘parietal instability.
In cold gas experimental setup, reproducing Taylor flow
has been observed that parietal instability leads to cohe
structures able to excite acoustic modes.5 This instability ap-
pears then to be one of the sources for inducing thrust os
lations. Currently, the problem is to couple instabilities a
acoustic.6–8

Particles are introduced in the propellant because t
increase its specific impulse on the one hand, and stab
possible tangential pressure modes on the other hand.
influence of the particles on the stability of solid-propella
motors has been studied numerically by Dupays,9 but only
by considering the vortex shedding resulting from the sh
layer initiated by the angular shape of the grain near
nozzle. The magnitude of the acoustic modes is also hig
dependent on the presence of particles in the flow such
il:
© 2003 American Institute of Physics
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recent computations performed by Lupoglazoff and Vuillot10

The effect of mass transfer between gas and particles
acoustic wave has also been studied by Daniel
Thévand.11 They show that this effect is of great importan
so that it can damp or increase the magnitude of an acou
wave, even without wind. So the particles cannot have
effect on the stability of the wall injected flow, and this pap
is the first attempt for modeling and quantifying the partic
effect on such a motion. Moreover for this type of flow, the
approach is purely numerical whereas the present one d
with the intrinsic instability.

Concerning the stability of particle-laden flows, pla
Poiseuille flow with inert particles has been studied
Saffman,12 especially by giving the asymptotic behavior
stability characteristics. Accurate computations have b
carried out by Isakov and Rudnyak.13 The most important
result in these two papers is that the addition of particles
a flow does not only stabilize it, as one can reasonably im
ine, but can also destabilize it by increasing the mass den
of the gas and thus the Reynolds numberR. Another
conclusion12 is that the stabilizing effect reaches a maximu
for given values of mass concentration and relaxation tim
Computations by Isakovet al. corroborate these results b
also indicate that, under certain conditions, the neutral cu
of stability re-loops, creating an ‘‘instability island’’ in the
plane~R,a!. ~Isakov uses a temporal stability theory in whic
a is a real wave number.! These studies show the comple
influence of particles on stability characteristics, but only
the plane Poiseuille flow.

One goal of the present paper is to determine if the
dition of particles in Taylor flow would also lead to a com
plex behavior, as in the case of Poiseuille flow. The m
interest is to know how particle addition modifies monoph
sic stability results and whether some particle sizes hav
be favored or avoided regarding their influence on stabi
characteristics. The general assumptions are first that
ticles are inert and have the same temperature as the
therefore there is no thermal effect that can induce compr
ibility. Moreover we assume that there is only one kind
spherical particles.

In the case of particle-laden Taylor flow, an Euleri
approach of the two-phase flow is retained, as has been
in the above-mentioned studies, accordingly both gas fl
and particle motion are represented by a velocity field an
mass density field; this is described in Secs. II and III of
paper. Because of the particle inertia and the nonparallel
ture of Taylor flow, gas velocity, and particle velocity field
cannot be identical, thus a new solution for the flow w
particles induced by gas injection through porous walls
sought in Sec. IV. A one-way coupling computation is a
sumed to be efficient, which limits particle mass concen
tion rp ~defined in the following! and Stokes numberS for
comparisons with practical configurations. After the determ
nation of the so-called ‘‘mean flow,’’ a linear stability stud
is carried out in Sec. V, leading to an eigenvalue proble
The results described in Sec. V are the following ones.
using a standard small perturbation technique applied to
injected particle mass concentration, it is first proved that
stability properties vary continuously from the single-pha
Downloaded 02 Apr 2003 to 144.204.65.4. Redistribution subject to AI
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Taylor flow stability results. In addition, spectrum analys
seems to prove that particles do not add any amplified mo
in comparison with the monophasic Taylor flow. The mo
amplified mode is finally considered for the parametric stu
concluding this stability analysis. The complex influence
dust in flows is still observable as is the case for the partic
laden Poiseuille flow.

II. GEOMETRY

The study is based on a two-dimensional plane flow
duced by fluid and particle injection from lateral poro
walls of a 2L height channel. The gas speed at the propell
boundary isVf ,w , while the speed of a solid particle releas
from the wall isVp,w* . Thex axis corresponds to the stream
wise axis and is the symmetry line of the channel, they axis
is orthogonal, as shown in Fig. 1. The channel is closed
the front wall x50, defining a semi-infinite channel forx
>0. The reference length is half the channel heightL and the
reference speed isVf ,w for both fluid and particle motions
Fluid streamlines and the velocity gas flow field for the Ta
lor flow solution ~see Casaliset al.2 and Sec. IV A! are pre-
sented in Fig. 2.

III. TWO-PHASE FLOWS

We consider an incompressible gas of densityr f and
dynamic viscositym with the velocity fieldV f5Vf i

(Xi ,T),
where T represents time. Using the Eulerian approach,
define a velocity fieldVp5Vp,i(Xi ,T) and a number density
field N(Xi ,T) for the solid dispersed phase,N represents the
number of particles per unit volume. In order to simplify th
problem, we suppose uniform spherical rigid particles of
dius a and of material densityrp

o. We also assumea!L, so
that the resulting Reynolds numberRp5r faiVp2V f i /m is

FIG. 1. Geometric configuration scheme.

FIG. 2. Fluid streamlines and velocity profiles.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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small and the problem can be treated with the Stokes
proximation. Moreover, the bulk concentrationrp(r f /rp

o) is
assumed to be small (rp is the particle mass concentratio
as will be defined later!, so that the only force applied on
particle is the viscous Stokes dragFS5FSi56pam(Vf ,i

2Vp,i). The terms corresponding to the effects of the und
turbed flow pressure gradient, the added mass, the buoya
and the Basset history term are neglected. Due to these
sumptions, the mass conservation equation for the parti
and the particle motion equations are

]N

]T
1

]NVp,i

]Xi
50, ~1!

mpNS ]Vp,i

]T
1Vp, j

]Vp,i

]Xj
D56pamN~Vf ,i2Vp,i !,

i 51,2,3, ~2!

with mp5 4
3pa3rp

o the mass of a particle. SompN(Xi ,t) is
the mass of particles per unit volume.

In order to satisfy the momentum conservation for t
system$gas1particles%, the Stokes drag term, written on th
right-hand side of~2!, must be subtracted in the momentu
equation written for the gas:

r f S ]Vf ,i

]T
1Vf , j

]Vf ,i

]Xj
D52

]P

]Xi
1m

]2Vf ,i

]Xj]Xj
26pamN

3~Vf ,i2Vp,i !, i 51,2,3. ~3!

The incompressibility of the gas yields

]Vf ,i

]Xi
50. ~4!

Using the length scaleL and the reference velocityVf ,w , we
easily obtain the nondimensional quantities:

v f ,i5
Vf ,i

Vf ,w
, t5

Vf ,w

L
T,

vp,i5
Vp,i

Vf ,w
, p5

P

r fVf ,w
2 , ~5!

xi5
Xi

L
, rp5

mpN

r f
.

In the following x1 and x2 representx and y, respec-
tively. These variables lead to the following nondimensio
equations for the gas and particles:

]v f ,i

]t
1v f , j

]v f ,i

]xj
52

]p

]xi
1

1

R

]2v f ,i

]xj]xj

1
rp

S
~vp,i2v f ,i !, i 51,2,3, ~6!

]v f ,i

]xi
50, ~7!

]rp

]t
1

]rpvp,i

]xi
50, ~8!
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]vp,i

]t
1vp, j

]vp,i

]xj
5

1

S
~v f ,i2vp,i !, i 51,2,3. ~9!

The expressions of the Reynolds numberR and Stokes num-
ber S are

R5
r fVf ,wL

m
, S5

2

9 S a

L D 2 rp
0Vf ,wL

m
. ~10!

Obviously, the smaller the radiusa and the material density
rp

o of the particle are, the smaller the Stokes number is. S
an observation means that the smaller the Stokes numbe
the smaller the inertia of the particle is, and the better
particle reactivity is to a fluid perturbation.

IV. MEAN FLOW

We look for a steady solution in the set$(x,y)
P@0,̀ @3@21,1#%. The liney50 is also the symmetry line
for the flow. Since the solid phase is very diluted, one-w
coupling computations would be efficient. In fact, one-w
coupling computations are efficient, with the point of view
stability for quite low Stokes number and low particle ma
ratio ~the latter being the ratio of the mass of particles
leased on the total mass of gas and particles injected in
channel!, see Fe´raille et al.14 In the aforementioned paper,
is shown that the admissible particle mass ratio depends
the Stokes number of the particles. It is about 20% for Sto
number of about 1023 and more than 5% for Stokes numb
of about 0.1. Moreover, the Stokes number is assumed t
small, particles thus have no effect on gas; the Stokes d
term is neglected in the equations for the fluid motion~6!:
the gas velocity field is identical to the one issued in t
monophasic study~this assumption only concerns the me
flow, see Sec. V!.

As in the single-phase studies, solutions for the flu
stream functionc(x,y) and particle transverse and longitu
dinal velocities,Vp andUp , are sought in self-similar forms

c~x,y!5xF~y!,

vp,1~xi !5Up~x,y!5xG~y!, ~11!

vp,2~xi !5Vp~y!5J~y!.

The mass concentrationrp will be computed both in self-
similar form and in its most general form:

self-similar form rp5H~y!,
~12!

general form rp5rp~x,y!.

From these assumptions, an ordered system of equa
is obtained. After the already known gas mean flow, the p
ticles’ transverse velocityVp may first be determined, the
the longitudinal velocity of the particlesUp , and finally the
particle mass concentration as described in the following

A. Fluid velocity field

Introducing the stream functionc(x,y)5xF(y) in the
simplified equation~6!, the differential equation forF is15
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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F8F92FF-5
1

R
F ~ IV !, ~13!

associated with the following boundary conditions:

F~21!521, F8~21!50, F~1!51, F8~1!50.
~14!

In the case of an inviscid flow, Taylor3 found an analytical
solution:

;x>0, ;yP@21,1#, c~x,y!5x sinS p

2
yD . ~15!

Alternatively, the solution is computed from~13! and ~14!.
For Reynolds number larger than 1000, it appears that
analytical solution is very close to the computed one~see
Ref. 2!. In both cases, the only point where transverse fl
velocity is equal to zero is the liney50.

B. Transverse velocity Vp

The above-given assumptions induce some restrict
on the calculations of the solution as explained in the follo
ing. The equation forVp is

JJ81
F1J

S
50. ~16!

The problem would be still incomplete without the followin
boundary condition:

J~21!5
Vp,w*

Vf ,w
5Vp,w , Vp,w.0, ~17!

where Vp,w is the nondimensional particle velocity at th
lower propellant surface. A similar condition can be writt
for particles from the upper propellant surface:J(1)
52Vp,w . The gas transverse velocity is zero at the symm
try line, it may be expected that there exists a positiony1 for
which J(y1)50. In this case, at the pointy5y1 , the differ-
ential equation~16! is not Lipschitzian and the problem i
not defined correctly.@A differential equation in the form
z85f(y,z) is said to be Lipschitzian if the functionf is K
Lipschitzian with respect to the second variablez, i.e., 'K
.0/;(y,z1 ,z2) uf(y,z1)2f(y,z1)u<Kuz12z2u. If f is
continuous with respect to the two variablesy andz and isK
Lipschitzian with respect toz, the Cauchy–Lipschitz theo
rem indicates that the differential equation admits only o
solution with boundary conditions of Cauchy type. In t
case of Eq.~16!, the functionf5f(y,J) is clearly not Lip-
schitzian.# For ~16! and ~17!, the transverse positiony1 can
only be positive: the particle carried by the fluid and by
own inertia cannot stop before the fluid stops aty50, it may
only cross the liney50. Then, two kinds of solutions, lead
ing to two different behaviors, will be distinguished:

~1! y150, the particle transverse velocity value is zero
the symmetry line.

~2! y1.0, the particle transverse velocity value is nonze
on the symmetry line.
Downloaded 02 Apr 2003 to 144.204.65.4. Redistribution subject to AI
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By considering the first hypothesis (y150), in order to
know how the solutionJ evolves near 0, order 1 limited
expansions forF andJ are written as

F~y!5F8~0!y1o~y!, J~y!5J1y1o~y!.

Introducing these expansions in Eq.~16! leads to the follow-
ing quadratic equation:

J1
21

1

S
J11

1

S
F8~0!50.

This equation admits two real solutions only if the followin
condition is fulfilled:

S<
1

4F8~0!
. ~18!

To observe this condition, the only possible solution is

J15
211A124SF8~0!

2S
. ~19!

As expected, limS→0 J152F8(0), which is the clean gas
transverse velocity. Then, the timeT a particle needs to trave
from the propellant surface (y521) to the positiony1 is
determined by

E
0

T

dt5E
21

y150 dy

Vp~y!
.

1/Vp behaves as 1/y near 0, so that the above-given expre
sion indicates that the particles never reach the liney50.

On the other hand, if condition~18! is not observed, the
two solutions forJ1 would be complex, therefore unphysica
The relationVp50 cannot be used aty150, but only aty1

.0. In that case, the behavior of the solution near the p
tion y1 is found in the form

J~y!5A2F~y1!

S
~y12y!1/21o~y12y!1/2.

Then the new positiony1.0 can be reached in a finite time
whereasy150 has previously be found to be an asympto
position. In addition with the circular curvature of th
streamline imposed by theAy12y behavior aty1 , particles
would oscillate aroundy50. In this case, the solution in
self-similar form Vp(x,y)5J(y) is no longer acceptable
Thus the present study is limited to flows satisfying con
tion ~18!.

Taking into account this conclusion, the analysis may
limited to a half-domain. We choose the lower doma
$(x,y)P@0,̀ @3@21,0#%.

C. Longitudinal velocity Up

The projection of the particle momentum equation on
x axis is

JG85
F82G

S
2G2. ~20!

The associated boundary condition is

G~21!50. ~21!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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This condition, in addition to~17!, means that the particle i
orthogonally released from the plane surface of the pro
lant. With condition~18!, the longitudinal component of th
particles’ velocity reaches a maximum at the liney50 for
eachx coordinate. With the same treatment near the sym
try line as the one for the determination ofJ, the maximum
of G is located aty50 and has the following value:

G~0!5G05
211A114SF8~0!

2S
. ~22!

As G0<F8(0), the maximum particle velocity is smalle
than the maximum gas velocity, as expected.

D. Particle mass concentration rp

The functionsJ and G being determined, particle mas
concentration inside the channel can be now calculated.

As has been done forUp andVp , the first idea is to seek
rp in a self-similar solutionH(y). The first requirement is to
impose a uniform boundary condition at the wall:

H~21!5rp,w , ~23!

whererp,w is a constant value. Then Eq.~8! reduces to

HG1JH81J8H50. ~24!

However, as will be explained in the following section, th
self-similar solution is not bounded aty50. In order to avoid
this nonphysical behavior,rp must be fixed to 0 at the fron
wall ~there is no particle injection at the front wall!. In that
case, the boundary condition must be dependent on thx
coordinate and becomes

;xP@0,̀ @ ,rp~x,21!5 r̃p,w~x!, ~25!

with r̃p,w50 at x50 and limx→` r̃p,w(x)5rp,w . A self-
similar solution is no longer possible, Eq.~8! is now a partial
differential equation:

rpG1xG
]rp

]x
1J

]rp

]y
1J8rp50. ~26!

In a practical way, ther̃p,w function is the concatenation of
constant value function~equal torp,w) for x.x0 and of an
increasing function from 0 forx50 to rp,w for x5x0 . In
Fig. 3, the two kinds of solutionrp and H are plotted for
Vp,w50.1, x051 at the abscissasx52,4,6,8,10. As men-
tioned previously,H exhibits a diverging behavior close t
the symmetry line. Apart from this region,rp and H are
nearly identical. Moreover, it must be pointed out that p
ticle mass concentrationrp has a nearly constant value o
the major part of the channel height. An estimation of t
plateau is notedPr ~see Fig. 3!.

1. H behavior

In order to explain the divergence of the solutionH near
y50, let us define a point ofy-coordinatel located in the
vicinity of the symmetry line. Then Eq.~24! can be expanded
for uy2 l u!1 in

J1yH81~G01J1!H1o~y2 l !50, ~27!

using J1 and G0 from ~19! and ~22!. The solution of this
equation is
Downloaded 02 Apr 2003 to 144.204.65.4. Redistribution subject to AI
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H~y!5H~ l !S y

l D
2~11G0 /J1!

.

Due to expressions~19! and ~22!, the coefficient (1
1G0 /J1) is always positive for flows obeying conditio
~18!, so that the solution is divergent near the symmetry li
That is the reason why we rather work with the comple
partial differential equation problem$(26)1(25)%, which
has a zero value at the symmetry line.

2. rp behavior

Compared with the fluid flow, the divergence of the pa
ticle velocity field (]vpi /]xi) has a nonzero value becau
rp is not constant. More precisely (]vpi /]xi)(0)5G01J1

,0, so that there is a contraction of the volume near the
y50, and then the particle mass concentration increa
close to the symmetry line as the functionH does. Thus it
appears thatH may be a good candidate for an asympto
approximation ofrp for x@1. Actually, in order to prove this
assertion, let us consider the functionR(x,y)5rp(x,y),
with x51/x. For yP@21,h# with h,0 and forx@1, the
function R can be sought in the form

R~x,y!5R0~y!1O~x!.

Equation~26! gives the following equation at order 0 fo
x, except close toy50 whereR depends strongly on thex
coordinate:

JR081~G1J8!R050, ~28!

which is identical to Eq.~24!. Furthermore, we assume th
r̃p,w→rp,w asx→` so that the boundary condition assoc
ated withR0 is

R0~21!5rp,w .

Finally, the problem forR0 is identical to the problem forH,
so R0[H. The agreement between both solutions is sho
in Fig. 3.

FIG. 3. Comparison of the self-similar form solutionH and the PDE solu-
tion rp of the particle mass concentration atx52, 4, 6, 8, 10 withx051.
R5103, S51021, Vp,w50.1, andrp,w51. Apparition of a plateauPr be-
tweeny520.9 andy520.25,Pr.Vp,wrp,w50.1.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Even if the evolutions ofrp and H are the same on a
large extent of they coordinate, we shall work with the com
plete problem$(26)1(25)% to avoid any problem with the
stability study.

V. STABILITY STUDY

Now that the mean flow is determined, a linear stabil
theory can be applied. Although we are aware that our
proach is not consistent,16 we consider perturbationq8 in the
normal mode form

q8~x,y,t !5q̂~y!expi ~ax2vt !,

as is usually assumed for a strictly parallel mean flow. Ma
ematically, the factorization of the perturbation into the n
mal mode form is not valid in the case of the Taylor flo
because the basic flow depends on the streamwise coord
x. As a consequence, stability results depend on the for
lation of the problem.4 Despite this approximation, studie
on the monophasic flow have shown good agreement w
results obtained with more consistent approaches and
experiments.5

Linearizing Eqs.~6!–~9! ~in which the action of the par
ticles toward the flow is no longer neglected! and introducing
the expression of the above-determined mean flow lea
the following system:

iaûf1
dv̂ f

dy
50, ~29!

2 ivr̂p1 iar̂pxG1Gr̂p1J
dr̂p

dy
1J8r̂p1

]r̄p

]x
ûp1 iar̄pûp

1
]r̄p

]y
v̂p1 r̄p

dv̂p

dy
50, ~30!

2 ivûf1ûfF81 v̂ fxF91 iaxûfF82F
dûf

dy

52 ia p̂1
1

R S d2ûf

dy2 2a2ûf D
1

r̂p

S
x~G2F8!1

r̄p

S
~ ûp2ûf !,

~31!

2 iv v̂ f2 v̂ fF81 iaxv̂ fF82F
dv̂ f

dy

52
dp̂

dy
1

1

R S d2v̂ f

dy2 2a2v̂ f D1
r̂p

S
~J1F !1

r̄p

S
~ v̂p2 v̂ f !,

2 ivûp1ûpG1 iaûpxG1 v̂pxG81J
dûp

dy
5

1

S
~ ûf2ûp!,

~32!

2 iv v̂p1 ia v̂pxG1 v̂pJ81J
dv̂p

dy
5

1

S
~ v̂ f2 v̂p!.

Such a system can be written as a first-order system of s
ordinary differential equations:

L.Z5S d•

dy
2D• D .Z50,
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with the unknown column vector:

Z5S ûf ,
dûf

dy
, v̂ f ,p̂,ûp ,v̂p ,r̂pD T

.

The 737 matrix D is given in Appendix A.
In system ~29!–~32!, equations for particles are non

Lipschitzian on the axisy50—becauseVp(0)5J(0)50, as
seen earlier. So Eqs.~30! and ~32! cannot be integrated be
tween the two physical boundaries (y50 andy521).

A. Boundary conditions and translated boundary
conditions

Let us now determine the seven boundary conditions
the problem. We only consider the varicose mode.4 Some
conditions correspond to usual conditions for eigenmo
~homogeneous conditions at the boundaries! expressed at the
porous wall, while the other ones corresponding to the c
sen symmetry~varicose mode in this case! must be expressed
at the symmetry line. There is no perturbation in the inject
process, so that conditions aty521 are

ûf50, v̂ f50, ûp50, v̂p50, r̂p50. ~33!

Equations~29!–~32! show that particle and gas perturbatio
have the same symmetry properties, and that the varic
mode is obtained with two conditions aty50:

dûf

dy
50, v̂ f50. ~34!

Relations~33! and ~34! provide the seven necessary boun
ary conditions for integrating~29!–~32! in the segment
@21,0#.

As previously noted, Eqs.~30! and~32! are not Lipschit-
zian aty50. The solution we choose in order to circumve
this difficulty consists in translating conditions~34! from y
50 to y5yc , whereyc is negative and close toy50. This
method is also employed in the axisymmetric case in orde
prevent any problem near the axis.17 Each quantity~mean
flow and perturbation! is developed into a regular Taylo
expansion in the vicinity ofy50. At leading order, with the
supplementary condition (]rp /]y)(x,0)50, the two follow-
ing relations, called translated boundary conditions~TBC!,
are readily obtained:

iycaŭf1 v̆ f50,
~35!

2 iaRycp̆2~2 ivR1F1R1 iaRxF11a2!ycŭf

1
dŭf

dy
50,

and these relations replace conditions~34!. @Theoretically,
we are sure that (]rp /]y)(x,0) is equal to zero if there is no
injection of particles on a segment@0,x1# with x1.0. But
numerically, the weaker assumption (dr̃p,w /dx)(0)50 is
sufficient. All the results will be presented by using it.# No-
tation q̆ indicates the value of the quantityq̂ at y5yc .

Finally, the stability problem to be solved reduces
Eqs. ~29!–~32! with conditions~33! and ~35!, and the inte-
gration is done from the wally521 up toy5yc .
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Downloaded 02 
TABLE I. Comparison of Isakov results~on the left-hand side! and present study results~on the right-hand side!
for particle-laden Poiseuille flow. The uniform mass concentration isrp50.1. Sv5S/R is the Stokes number
based on the viscous characteristic time.

Sv Rc
Isakov ac

Isakov vc
Isakov Rc ac vc

231025 6 321.2 0.9852 0.248 44 6 321.2 0.985 2 0.248 44
1024 33 340.5 0.7830 0.128 98 33 342.4 0.782 97 0.128 98
1022 6 768.3 1.0012 0.254 80 6 771.8 1.001 2 0.254 80
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B. Numerical aspect

With the purpose of discretizing the eigenvalue proble
a fourth-order compact numerical scheme developed by
lik et al.18 is used. The eigenvalue may be determined eit
by a shooting method—based on a Newton–Raphson
vergence procedure—or by aLAPACK routine determining all
the mathematical eigenvalues of the discretized problem.
code has been validated for the particle loaded plane
seuille flow, whose numerical results have been published
Isakov et al.13 Table I compares the critical values, corr
sponding to a growth rate equal to zero,Rc , ac , andvc for
different Stokes numbersSv5S/R and for a uniform mass
concentrationrp50.1, which is an acceptable solution in th
case of the particle-laden plane Poiseuille flow.@Because the
viscous diffusion has the main role in plane Poiseuille fl
stability, the Stokes numberSv5 2

9(a/L)2(rp
o/r f) used by

Saffman and Isakov is defined by the relaxation time ver
the characteristic diffusive time. In our case, the princi
actor is the convective term—via streamline curvature—soS
corresponds to the relaxation time versus the character
convective time.# The code also has been validated by co
paring the results to the ones for the plane monophasic T
lor flow ~see Ref. 2!.

FIG. 4. Temporal spectrum.R51000,Vp,w50.1, S51021. Stabilizing ef-
fect of the particles.a53.65020.3906i , x510, andx051. The lines with
arrows indicate a possible evolution of the single-phase eigenmodes
addition of particles. The circle points out a possible destabilization of
eigenmode but it still is stable.
Apr 2003 to 144.204.65.4. Redistribution subject to AI
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C. Spectrum for temporal analysis

The discretized operator spectra inv5v r1v i i ~a tem-
poral theory is used, a positive value ofv i corresponds to an
unstable basic flow! is sought by fixinga to the most spa-
tially amplified monophasic mode obtained withv a real
number. Thus if one of the eigenvalues of the spectrum h
positive imaginary part, the particles have a destabilizing
fect. Conversely, ifv i,0 the particles tend to stabilize th
flow. In Figs. 4 and 5 the evolution of the eigenvalues wh
adding particles are plotted, for values of (S,R,Vp,w), re-
spectively, equal to (1021, 1000, 0.1! and (1023, 1000, 1!
and for several values ofrp,w with a53.65020.3906i , x
510, andx051, the evolution of the eigenvalues when ad
ing particles are plotted. In Fig. 4, the temporal growth ra
v i decreases withrp,w , so the addition of particles stabilize
the flow. On the other hand, in Fig. 5,v i increases with
rp,w ; this means that the particles destabilize the flow.

Only a part of the modes which seem to exist in t
single-phase flow have been plotted. Many other modes
generated by the numerical method, they do not conve
when refining the grid. It has been checked, at least
monophasic modes, that the plotted ones are independe
the numerical mesh. As a conclusion, we can note that in
cases, the most amplified gas mode remains the most am
fied two-phase flow mode. We did not find any count

ith
n

FIG. 5. Temporal spectrum.R51000, Vp,w51.0, S51023. Destabilizing
effect of the particles.a53.65020.3906i , x510, andx051. The lines with
arrows indicate a possible evolution of the single-phase eigenmodes
addition of particles.
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FIG. 6. Comparison of linear~solid line! and complete computations~points! in the case of weak particle mass concentrations.Vp,w50.1, R5104, andS
51022.
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example of such an assertion. So, we shall only study
most amplified gas mode from now on.

In Figs. 4 and 5, the square symbols represent eigen
ues obtained for the one-phase flow stability equations
appears that particle addition in Taylor flow does not cre
another instability mode and only modifies monophasic
stability modes. A similar proposition was given b
Saffman12 for particle laden plane Poiseuille flow.

D. Weak particle mass concentration

As explained previously, the spectra obtained either
the strictly monophasic equations or for two-phase fl
equations withrp,w50 are identical. Thus, the continuity o
the eigenvalues with respect torp,w may be guessed; th
goal of the present section is to demonstrate it. In this s
tion, as in the following, results are given with the spat
linear stability theory, so onlya is a complex number. As a
matter of interest, ifa i is negative~the growth rate is2a i),
the solution is unstable.

We focus the stability analysis on small values ofrp,w .
For example, the wave numbera is expanded into the form
a5a01rp,wa1 . Consequently, the initial eigenvalue pro
lem L(a,rp,w).Z50, whereL(a,rp,w) is the linear operator
andZ the unknown vector, is written:

L~a,rp,w!.Z5L~a0,0!.Z01rp,wS a1

]L
]a

~a0,0!.Z0

1
]L

]rp,w
~a0,0!.Z01L~a0,0!.Z1D

1o~rp,w!.

At order 0, the known monophasic problem is recovered

L~a0,0!.Z050. ~36!

At order 1, an inhomogeneous problem is obtained:
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L~a0,0!.Z152a1

]L
]a

~a0,0!.Z02
]L

]rp,w
~a0,0!.Z0

52L1.Z0 , ~37!

wherea1 andZ1 are the unknown parameters. With the pu
pose of determining the correctiona1 of the complex wave
numbera, the Fredholm alternative is used. It shows that
algebra-type problemA•u5 f , where A is not invertible
may have solutions only if the given functionf is orthogonal
to the kernel of the adjoint operatorA* . In our case, the
operatorL(a0,0) is not invertible becausea0 is searched as
an eigenvalue of it, so (2L1.Z0) must verify the orthogo-
nality condition

~Z* u2L1.Z0!50, ~38!

whereZ* belongs to the kernel of the adjoint operatorL0* of
L(a0,0). Relation~38!, called ‘‘solvability condition’’ gives
the linear correctiona1 .19

In order to determine the latter, the first task consists
solving the adjoint problem. Keeping in mind that the dire
problemL(a0,0) is not Lipschitzian aty50, so the adjoint
L0* is. Therefore, as has been done for the direct probl
TBC must be determined atyc for the adjoint operator. Two
techniques are possible.

~1! The adjoint operator is calculated in the segment@21,0#,
so boundary conditions aty50 are determined directly
The same procedure used for the direct problem is
plied. This gives a set of conditions aty5yc to solve
L0* .

~2! The adjoint operator is determined in@21,yc# and TBC
for L0* are determined in order to eliminate the nonin
gral terms which appear in the integration by part us
for the calculation of the adjoint operator.

For TBC of ordern51, the two ways lead exactly to th
same analytical expressions presented in Appendix B.
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FIG. 7. Influence of the boundary condition shape on stability results. Evolution of the imaginary parta i of the eigenvaluea vs rp,w for two kinds of parietal
particle concentration lawr̃p,w(x) plotted on the left-hand side withx055. Vp,w51, R5103, S51023, andrp,w51. Abscissax varying from 4 to 7.
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Results from the linearized behavior with the mass c
centration at the propellant surfacerp,w ~solid line! and from
the complete computation~points! are presented in Fig. 6, fo
a Stokes numberS51022, a Reynolds numberR5104, and
a particle speed ejectionVp,w50.1. Both methods give com
parable results for parietal mass densityrp,w up to 0.1
(rp,w .Vp,w51022); this is true for the wavelengtha r ~on
the left! and the growth ratea i ~on the right!.

E. Parametric study

In this section, results from various computations a
shown in order to give some ideas on the influence of e
parameter on stability characteristics. We successively l
at the influence of the shape ofr̃p,w , thex0 value~upstream
abscissa of the constant particle mass concentration a
porous wall!, the value ofVp,w , and large values ofrp,w .

1. Influence of the shape of r̃p ,w and of x 0

To solve the PDE~26! in order to determinerp , the
boundary condition aty521, r̃p,w must be specified. Its
value and its first derivative atx50 are set equal to 0 and
nonzero constant valuerp,w is imposed forx>x0 . But the
shape ofr̃p,w for 0,x,x0 is not known, it is an artifact
allowing rp to be bounded close to the symmetry line. Th
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it cannot have any influence on stability results. Two diffe
ent shapes have been tested called ‘‘cos’’ and ‘‘tanh’’ who
expressions are, respectively,

‘ ‘cos’’ H rp,w if x.x0

rp,w

12cos~p ~x/x0!!
2

if x,x0 ,

‘ ‘ tanh’’ rp,w

tanh~10~x/x0!25!1tanh 5

2 tanh 5
.

The left-hand side of Fig. 7 gives two different shapes
the functionr̃p,w with x055 with the corresponding stability
results~growth rate! plotted on the right-hand side. As can b
observed, results are rapidly brought together downstream
the positionx0 , so that the shape of the boundary conditi
does not have any influence on stability results. This can
explained by the following remark. The injected mass def
is convected by the gas so that for largex/x0 values this
defect is rejected close toy50, and we know that the insta
bility is mainly governed by the streamline curvature ne
the porous wall.4 In the following, x0 is fixed to 1. As the
basic single-phase flow becomes unstable fromx'5, the in-
fluence of the shape of the injection forx<x0 is negligible in
the amplified regime.
TABLE II. Influence of particle ejection speedVp,w on correctiona1 at x510 with x051 andv530.

R S Vp,w

Pr~Vp,w!

Pr~Vp,w51! Re(a1) Im(a1)

Re~a1!~Vp,w!

Re~a1!~Vp,w51!

Im~a1!~Vp,w!

Im~a1!~Vp,w51!

103 1023 1.0 1.0 3.302331022 23.162731022 1.0 1.0
103 1023 1021 9.8831022 3.350331023 23.112931023 1.0131021 9.8431022

103 1023 1022 1.1231022 3.824431024 23.552031024 1.1531022 1.1231022

104 1021 1.0 1.0 0.807 69 1.034 6 1.0 1.0
104 1021 1021 9.9331022 7.822 231022 0.138 91 9.6831022 1.3431021

104 1021 1022 9.8431023 7.723 831023 1.380 331022 9.5631023 1.3331022

104 1021 1023 1.1231023 8.829 131024 1.577 931023 1.0931023 1.5231023
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FIG. 8. Dependency of numbera with particle mass concentration ratioPr(Vp,w)/Pr(Vp,w51) created by two different ejection speedsVp,w51 andVp,w

50.1: Pr(Vp,w50.1)/Pr(Vp,w51).9.8931022. R5103, S51023. x510 andx051.
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2. Influence of V p,w

Now, let us have a look at the role of injection speed
the particlesVp,w on stability results. In Fig. 8, the values o
the real and imaginary parts ofa are plotted as function o
rp,w for two values ofVp,w . The twox abscissas are scale
together in order to haverp,w(Vp,w51)5K.rp,w(Vp,w

50.1) with K being the ratio of the two plateau value
(9.8931022 as indicated in the caption!. The plateauPr has
been defined in Sec. IV D, see also Fig. 3. Fora r and fora i ,
the two curves are superimposed, the values ofa are conse-
quently determined by the plateau for each particle inject
velocity:

a~Vp,w ,rp,w!.aS Vp,w51,
Pr~Vp,w!

Pr~Vp,w51!
rp,wD . ~39!

This simple expression is confirmed in Table II obtained
weak values ofrp,w as described in Sec. V D. In that case t
previous relationship~39! becomes

a1~Vp,w!.
Pr~Vp,w!

Pr
a1~Vp,w51!. ~40!

As indicated in Table II, this estimation works better f
weak Stokes numbers.

Relation~40! points out the role of the plateauPr . It is
interesting to note that this valuePr may be estimated fo
small Stokes numbers. In this case, very close to the wall,
particle transverse velocity evolves rapidly fromVp,w to Vf ,w

~51!, whereas the particle longitudinal velocity is negligib
so that the control volume, with a fixed number of particl
is divided by Vp,w . Consequently, the concentrationrp

evolves rapidly fromrp,w to the plateauPr5rp,wVp,w . Fi-
nally the correctiona1 is proportional toVp,w ~in particular
the sign ofa1 is not modified byVp,w).
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3. Case of large values of rp ,w

Figures 9 and 10 show that by increasingrp,w , instabil-
ity wave numbers get closer to inviscid flow instability one
In order to understand such behavior, it must be pointed
that increasing particle mass concentration is like increas
the mass densityr f of the fluid for the definition of the
Reynolds number. In fact, forrp,w@1, perturbed fluid mo-
mentum equations~31! indicatesûf ,i;ûp,i , so that~31! and
~32! lead to@(41)←(31)2 r̄p3(32)#:

2 ivû~11 r̄p!1û~F81 r̄pG!1 v̂x~F91 r̄pG8!

1 iaxû~F81 r̄pG!1~ r̄pJ2F !
dû

dy

52 ia p̂1
1

R S d2û

dy22a2ûD1
r̂p

S
x~G2F8!

1OS û,v̂,
dû

dy
, p̂D ,

2 iv v̂~11 r̄p!2 v̂~F81 r̄pG!1 iaxv̂~F81 r̄pG!

1~ r̄pJ2F !
dv̂
dy

52
dr̂

dy
1

1

R S d2v̂
dy22a2v̂ D

1
r̂p

S
~J1F !1OS û,v̂,

dû

dy
, p̂D . ~41!

The left-hand-side terms of Eq.~41! are of order

Oconv5min~ i~11 r̄p!i2 ,i~F81 r̄pG!i2 ,

i~F91 r̄pG8!i2 ,i~ r̄pJ2F !i2).~11Pr!,
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so that the characteristic value of the convective termOconv

is not only larger than the characteristic value of the diffus
term of order 1/R, but is increasing withrp,w . Therefore the
effective Reynolds number is much larger, forrp,w@1, than
the one used by definition. Care must be taken in defin
Oconv which is estimated by the quadratic normiXi2 , which
corresponds to the quadratic average of the functionX in
@21,yc#. But, rp(x,0)50 and (]rp /]y)(x,0)50, so that in
a neighborhood of the axisy50, convective and diffusive
terms are of the same order as in the single-phase flow.
may explain the small but persistent differences observed
large particle mass concentration levelrp,w between viscous
and inviscid results. If the convergence is not proved,

FIG. 9. Evolution of the wave numbera r with mass concentration at th
propellant surface.S51023, Vp,w51, v530, x510, andx051. Pinching
of the viscous results toward inviscid results.

FIG. 10. Evolution of the growth rate2a i with mass concentration at th
propellant surface.S51023, Vp,w51, v530, x510, andx051. Pinching
of the viscous results toward inviscid results.
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pinching of stability results for both viscous and invisc
flow is. As only the viscous Stokes drag term is kept a
only a one-way coupling computation is done, the pres
analysis is actually limited to small particle mass concen
tion. However, the previous remark gives a practical tool
determining the main tendencies: knowledge of t
monophasic growth rate and of the inviscid evolution ofa
with respect torp,w ~at the prescribedS value! determines
whether particles stabilize the flow or not, at least at la
particle mass concentration. If the monophasic growth r
value at fixed Reynolds numberR is larger than the inviscid
growth rate values for large value ofrp,w , then particles
stabilize the flow. Conversely, particles destabilize the fl
when monophasic growth rate value is lower than the inv
cid growth rate value obtained for largerp,w . Thanks to the
monotonous evolution ofa with respect torp,w ~at least
when the monophasic wave number is not close to the li
value ofa given by the inviscid result!, the last remark may
constitute a criterion for the determination of the effect of t
addition of particles upon stability. The sign of the modifie
growth rate also provides a similar criterion but only f
small particle concentrations.

VI. CONCLUSION

The present study is a first investigation of the parti
effect upon Taylor flow stability, whose knowledge is re
evant in order to understand thrust oscillations of sol
propellant motors. First, a solution in a self-similar form
found for both fluid and particle velocity fields when th
condition 4SF8(0)<1 is fulfilled. The particle mass concen
trationrp cannot be sought in a self-similar form because
its divergence near the symmetry liney50, so that a PDE
has to be solved in the~x, y! plane. A linear stability study is
performed for this particular flow. Based on the spectrum
the linearized problem, it appears that particles would
create extra instability modes compared with the sing
phase flow, but would only modify its modes. The study
tiny particle mass concentration enables us to determin
linear correction ofa from the monophasic study, and t
demonstrate the expected continuity of stability parame
from one-phase to two-phase flow. Finally, it appears t
particles act upon the Reynolds numberR by virtually reduc-
ing fluid viscosity or increasing the mass density of the
sociated flow, as described by Saffman12 and Isakov and
Rudnyak.13 It follows that the added particles tend to brin
stability modes close to two-phase flow inviscid modes. T
role of the ejection speedVp,w is also explained: it mainly
exerts influence on particle mass concentration especially
changing the plateauPr , whose influence on stability ap
pears to be nearly linear. Finally, in order to know if particl
stabilize or not, a simple criteria is proposed: it is based
inviscid results for largerp,w and monophasic results. The
as the Reynolds number and the Stokes number are kno
so the limit value ofa is, given by inviscid results, and th
rate of particle influencea1 , characterizing the convergenc
speed to inviscid results.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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APPENDIX A: STABILITY SYSTEM FOR THE
PARTICLE LOADED TAYLOR FLOW

As noted in Sec. V, the linear operator for stability c
be written in the following form:

dZ
dy

5DZ,

with the unknown vectorZ on the form

Z5S ûf ,
dûf

dy
,v̂ f ,p̂,ûp ,v̂p ,r̂pD T

,

whereVT is the transpose of vectorV. Matrix D is of the
form

D5S 0 1 0 0 0 0 0

d2,1 d2,2 d2,3 d2,4 d2,5 0 d2,7

d3,1 0 0 0 0 0 0

d4,1 d4,2 d4,3 0 0 d4,6 d4,7

d5,1 0 0 0 d5,5 d5,6 0

0 0 d6,3 0 0 d6,6 0

0 0 d7,3 0 d7,5 d7,6 d7,7

D ,

whose nonzero coefficients are

d2,152 ivR1R
]U f

]x
1 iaRUf1a21

Rrp

S
,

d2,25RVf ,

d2,35R
]U f

]y
,

d2,45 iaR,

d2,552
Rrp

S
,

d2,75
R

S
~U f2Up!,

d3,152 ia,

d4,15 iaVf ,

d4,252
ia

R
,

d4,35 iv2S a2

R
1

rp

S
1 iaU f1

dVf

dy D ,

d4,65
rp

S
,
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d4,75
Vp2Vf

S
,

d5,15
1

SVp
,

d5,55
1

Vp
S 2 iaUp2

1

S
2

]Up

]x
1 iv D ,

d5,652
1

Vp

]Up

]y
,

d6,35
1

SVp
,

d6,65
1

Vp
S 2 iaUp2

1

S
2

dVp

dy
1 iv D ,

d7,352
rp

SVp
2 ,

d7,55
1

Vp
S 2 iarp2

]rp

]x D ,

d7,65
1

Vp
S 2

]rp

]y
1

rp

Vp
S 1

S
1 iaUp1

dVf

dy
2 iv D D ,

d7,75
1

Vp
S 2 iaUp2

]Up

]x
2

dVp

dy
1 iv D .

APPENDIX B: ADJOINT OPERATOR BOUNDARY
CONDITIONS

In Sec. V D the Fredholm alternative is used in order
define the linear correctiona1 to the monophasic numbera.
As already said in Sec. V D, two possible ways for determ
ing the TBC of the adjoint problem exist. First, TBC can
sought from knowledge of the boundary conditions aty50
of the adjoint problem and the technique is the same as in
case of the direct problem: these conditions are transla
from y50 to y5yc . The second way is that the TBC ar
directly obtained from the integration by parts that leads
the adjoint operator, in this case, the integration is done
the segment@21,yc#. The purpose of this appendix is to giv
explicitely the TBC obtained with an expansion of the fir
order of the eigenfunctions.

At y5yc :

~1! Z5* 50,
~2! Z6* 50,
~3! Z7* 50,

~4! ia0RZ2* 1Z4* /yc50,

~5! Z1* /yc2 ia0Z3* 1~R~2 iv1F11 ixF1a0!

1~a0!2!Z2* 50,

and aty521:

~1! Z2* 50,
~2! Z4* 50.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The conditions have been obtained by the two differ
methods.
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