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Channel flow induced by wall injection of fluid and particles
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The Taylor flow is the laminar single-phase flow induced by gas injection through porous walls, and
is assumed to represent the flow inside solid propellant motors. Such a flow is intrinsically unstable,
and the generated instabilities are probably responsible for the thrust oscillations observed in the
aforesaid motors. However particles are embedded in the propellants usually used, and are released
in the fluid by the lateral walls during the combustion, so that there are two heterogeneous phases
in the flow. The purpose of this paper is to study the influence of these particles on stability by
comparison with stability results from the single-phase studies, in a plane two-dimensional
configuration. The particles are supposed to be chemically inert and of a uniform size. In order to
carry out a linear stability study for this flow modified by the presence of particles, the mean particle
velocity field is first determined, assuming that only the gas exerts forces on the particles. This field
is sought in a self-similar form, which imposes a limit on the size of the particles. However, the
particle mass concentration cannot be obtained in a self-similar form, but can only be described by
a partial differential equation. The mean flow characteristics being determined, the spectrum of the
discretized linear stability operator shows first that particle addition does not trigger any new
“dangerous” modes compared with the single-phase flow case. It also shows that the most amplified
mode in the case of the single-phase flow remains the most amplified mode in the case of the
two-phase flow. Moreover, the addition of particles acts continuously upon stability results,
behaving linearly with respect to the particle mass concentration when the latter is small. The linear
correction to the monophasic mode, as well as the evolution of the modes with weak values of the
particle mass concentration at the wall, are shown to be proportional to the ejection velocity of the
particles. Then, the evolution of the eigenmodes from a given injection speed of the particles to
another one is deduced by affinity, all other parameters being fixed. With a fixed Stokes number,
stability results for a finite Reynolds number and results for the inviscid flow bring together when
augmenting the particle mass concentration at the wall. Therefore, by knowing single-phase flow
results and the evolution of stability characteristics of the two-phase flow in the inviscid case, it is
easy to determine whether particle-laden Taylor flow is more or less stable than the monophasic
Taylor flow for large particle mass concentration. 2003 American Institute of Physics.
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I. INTRODUCTION sic flow. The large curvature of the streamlines at the wall
Thrust of large solid propellant motors may exhibit os- seems_ 0 be_ requnsmle_ .for_ the '”Stab"'t?’ of Fhe ffo_go
cillations whose frequency can be related to the Iongitudina‘hat this particular instability is called “parietal instability.”
acoustic mode, though the flow inside the booster is preln cold gas experimental setup, reproducing Taylor flow, it
dicted to be stable with conventional methods such as thBas been observed that parietal instability leads to coherent
acoustic balance. Varapaev and Yagodkind Casaligt al>  structures able to excite acoustic moddsis instability ap-
have shown that the flow induced by incompressible fluidpears then to be one of the sources for inducing thrust oscil-
injection through porous walls of a channel is intrinsically lations. Currently, the problem is to couple instabilities and
linearly unstable. The analytical laminar solution in a self-gcoustic®—8
similar form of such a motion has been calculated by Taylor  particles are introduced in the propellant because they
in the case of an inviscid flow, the so-called “Taylor flow.” jycrease its specific impulse on the one hand, and stabilize
Viscosity is then easily introduced via the Reynolds numbet, ,oqjhje tangential pressure modes on the other hand. The
R, leading to a nonanalytical solution, but with the SaM€influence of the particles on the stability of solid-propellant

similar form as the one of the Taylor flow. The solution ob- rHotors has been studied numerically by Dupysit only

tained is assumed to be representative of the flow in the heab idering th heddi lting f he sh
of a boostefupstream paytin the case of a purely monopha- y cor?s.m.jermg the vortex shedding resulting rom the shear
layer initiated by the angular shape of the grain near the

, nozzle. The magnitude of the acoustic modes is also highly
dAuthor to whom correspondence should be addressed. Electronic mail; . .
thierry.feraille@onecert.fr dependent on the presence of particles in the flow such as
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recent computations performed by Lupoglazoff and Vuifot. A

The effect of mass transfer between gas and particles o1 1Y porous wall

acoustic wave has also been studied by Daniel anc [~~~ ~~~ """ TTTTT T T T T AT "
Thevand!! They show that this effect is of great importance

so that it can damp or increase the magnitude of an acoustif"f:l; .
wave, even without wind. So the particles cannot have no |- - —— oY Xy
effect on the stability of the wall injected flow, and this paper | 7T

is the first attempt for modeling and quantifying the particle [ ----------------------------------- Vi (fluid)

effect on such a motion. Moreover for this type of flow, their T j

approach is purely numerical whereas the present one dea porous wail

with the intrinsic instability.

Concerning the stability of particle-laden flows, plane
Poiseuille flow with inert particles has been studied by
Saffman’? especially by giving the asymptotic behavior of Taylor flow stability results. In addition, spectrum analysis
stability characteristics. Accurate computations have beeseems to prove that particles do not add any amplified modes
carried out by Isakov and RudnyadkThe most important in comparison with the monophasic Taylor flow. The most
result in these two papers is that the addition of particles intamplified mode is finally considered for the parametric study
a flow does not only stabilize it, as one can reasonably imageoncluding this stability analysis. The complex influence of
ine, but can also destabilize it by increasing the mass densityust in flows is still observable as is the case for the particle-
of the gas and thus the Reynolds numkr Another laden Poiseuille flow.
conclusion? is that the stabilizing effect reaches a maximum
for given values of mass concentration and relaxation timell. GEOMETRY
Computations by Isakoet al. corroborate these results but
also indicate that, under certain conditions, the neutral curve |
of stability re-loops, creating an “instability island” in the
plane(R,«). (Isakov uses a temporal stability theory in which
a is a real wave numberThese studies show the complex

influence of particles on stability characteristics, but only forWise axis and is the symmetry line of the channel, yhads

the plane Poiseuille flow. . L .
One goal of the present paper is to determine if the ad'S orthogonal, as shown in Fig. 1. The channel is closed at

- . . the front wall x=0, defining a semi-infinite channel for
dition of particles in Taylor flow would also lead to a com- .

X . o . =0. The reference length is half the channel helghnd the

plex behavior, as in the case of Poiseuille flow. The main

! . . . o reference speed ¥; ,, for both fluid and particle motions.
interest is to know how particle addition modifies monopha-_; * ) ' . :

. . . . Fluid streamlines and the velocity gas flow field for the Tay-
sic stability results and whether some particle sizes have t

be favored or avoided regarding their influence on stabilityﬁ))r ﬂOW.SOI'“.'tlon (see Casaligt al” and Sec. IV A are pre-
L . , sented in Fig. 2.

characteristics. The general assumptions are first that par-
ticles are inert .and have the same temperature as the 935, TWO-PHASE FLOWS
therefore there is no thermal effect that can induce compress-
ibility. Moreover we assume that there is only one kind of ~ We consider an incompressible gas of dengityand
spherical particles. dynamic viscosityu with the velocity fieIdezvfi(Xi 1),

In the case of particle-laden Taylor flow, an Eulerianwhere T represents time. Using the Eulerian approach, we
approach of the two-phase flow is retained, as has been doggfine a velocity field/, =V, ;(X;,T) and a number density
in the above-mentioned studies, accordingly both gas floviield N(X;, T) for the solid dispersed phasé represents the
and particle motion are represented by a velocity field and @umber of particles per unit volume. In order to simplify the
mass density field; this is described in Secs. Il and Il of theproblem, we suppose uniform spherical rigid particles of ra-
paper. Because of the particle inertia and the nonparallel natius a and of material densitxog. We also assuma<L, so

ture of Taylor flow, gas velocity, and particle velocity fields that the resulting Reynolds numb§5=pfa||vp—vf||/,u is
cannot be identical, thus a new solution for the flow with

particles induced by gas injection through porous walls is
sought in Sec. IV. A one-way coupling computation is as-
sumed to be efficient, which limits particle mass concentra-
tion p, (defined in the following and Stokes numbes for
comparisons with practical configurations. After the determi-,,, |
nation of the so-called “mean flow,” a linear stability study

is carried out in Sec. V, leading to an eigenvalue problem. -05 ]
The results described in Sec. V are the following ones. By
using a standard small perturbation technique applied to the -1
injected particle mass concentration, it is first proved that the
stability properties vary continuously from the single-phase FIG. 2. Fluid streamlines and velocity profiles.

FIG. 1. Geometric configuration scheme.

The study is based on a two-dimensional plane flow in-
ed by fluid and particle injection from lateral porous
walls of a 2. height channel. The gas speed at the propellant
boundary isV¢ ,,, while the speed of a solid particle released
from the wall isV7 ,,. Thex axis corresponds to the stream-
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small and the problem can be treated with the Stokes ap- A, Jupi 1 _

proximation. Moreover, the bulk concentratipp(p¢/pyp) is ot Uiy §(Uf,i_vp,i)y i=1,23. 9
j

assumed to be smalpf is the particle mass concentration, .
as will be defined latgr so that the only force applied on a The expressions of the Reynolds numBeaind Stokes num-
particle is the viscous Stokes drades=Fgi=6mau(Vy, berSare

—V,,i). The terms corresponding to the effects of the undis- VoL 2/ al2 00V, L
turbed flow pressure gradient, the added mass, the buoyancy, R= M, g=2[2) PeYiw- (10)
and the Basset history term are neglected. Due to these as- 9lL 1

sumptions, the mass conservation equation for the particlespyiously, the smaller the radiwsand the material density
and the particle motion equations are pp of the particle are, the smaller the Stokes number is. Such
an observation means that the smaller the Stokes number is,

IN NV, ; nean aller
—+ ~=0, (1) the smaller the inertia of the particle is, and the better the
aT IX; ; Lo . .
particle reactivity is to a fluid perturbation.

Np,i Np,i
mpN W—i_vp']o"_x] :GWaMN(V“_vai),
. IV. MEAN FLOW
i=1,2,3, 2

. _4_ 30 . oy We look for a steady solution in the sdt(x,y)
with m,=5ma Pp the mass gf a particle. SmpN(X;.1) is [0 X[—1,1]}. The liney=0 is also the symmetry line
the mass of particles per unit volume. ; . ) ;

for the flow. Since the solid phase is very diluted, one-way

In order to satisfy the momentum conservation for the . . o
system{gast particleg, the Stokes drag term, written on the coupl!ng computat_lons WOUId_ pe eﬁlc_lent. In f‘f"Ct’ one-way
' ! coupling computations are efficient, with the point of view of

right-hand side of2), must be subtracted in the momentum - . .
. . ] stability for quite low Stokes number and low particle mass
equation written for the gas: ) . . .
ratio (the latter being the ratio of the mass of particles re-

Vs Vs i JP azvﬁi leased on the total mass of gas and particles injected in the

pel 7 T Vi oX; == ﬁ_XiJr/vL axjaxj—GTfa,U«N channel, see Feaille et .al.ll“ In the aforementioned paper, it
. is shown that the admissible particle mass ratio depends on
X(Vii—Vpi), i=123. (3) the Stokes number of the particles. It is about 20% for Stokes

number of about 10° and more than 5% for Stokes number

of about 0.1. Moreover, the Stokes number is assumed to be

small, particles thus have no effect on gas; the Stokes drag
4 term is neglected in the equations for the fluid motiG
the gas velocity field is identical to the one issued in the
monophasic studythis assumption only concerns the mean
flow, see Sec. Y.

As in the single-phase studies, solutions for the fluid

The incompressibility of the gas yields
[?Vf,i .
Xy

Using the length scale and the reference velocits ,,, we
easily obtain the nondimensional quantities:

vf,izh, = MT, stream functiony/(x,y) and particle transverse and longitu-
Viw L dinal velocitiesV, andU,,, are sought in self-similar forms:
v ':Vp,i p= P (5) (/l(xiy):XF(y)!
PV T peVE
’ vpa(Xi) =Up(X,y) =xG(y), 1Y
Xi mpN _ _
Xi=1 o=, Up,2X) =Vp(y)=3(y).

In the following x; and x, representx andy, respec-

The mass concentratiom, will be computed both in self-
similar form and in its most general form:

tively. These variables lead to the following nondimensional
equations for the gas and particles:

self-similar form p,=H(y),

%4‘ i <9_p+ 1 vy, general form p,=pp(X,y). (12
a O IXi i R dx;ox, From these assumpti i
ptions, an ordered system of equations
P . is obtained. After the already known gas mean flow, the par-
+ g(vp,i_vf,i)y i=1,23, (6 ticles’ transverse velocity/, may first be determined, then
the longitudinal velocity of the particled,, and finally the
e particle mass concentration as described in the following.
E (7
A. Fluid velocity field
%+ _ﬁppvpv‘ =0, (8) Introducing the stream functiog(x,y)=xF(y) in the
ot IXi simplified equation(6), the differential equation foF is*®
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1
F,F”_FszﬁF(IV), (13)
associated with the following boundary conditions:
F(-1)=-1, F'(-1)=0, F(1)=1, F'(1)=0.
(14

In the case of an inviscid flow, Tayfbfound an analytical
solution:

Vx=0, Vye[—1,1], zﬂ(x,y)=xsin(gy). (15

Alternatively, the solution is computed frod3) and (14).

For Reynolds number larger than 1000, it appears that the

analytical solution is very close to the computed deee

Ref. 2. In both cases, the only point where transverse fluid

velocity is equal to zero is the ling=0.

B. Transverse velocity V/,,

Channel flow induced by wall injection of fluid 351

By considering the first hypothesiy(=0), in order to
know how the solution] evolves near 0, order 1 limited
expansions foF andJ are written as

F(y)=F'(0)y+o(y), J(y)=Jiy+o(y).

Introducing these expansions in Ed6) leads to the follow-
ing quadratic equation:

1J+1F’0_
sdits (0)=

2
_l’_
Jl S

This equation admits two real solutions only if the following

condition is fulfilled:
1

4F'(0)°

To observe this condition, the only possible solution is

—1+1-4SF(0)

1= 2S

S< (18

(19

As expected, lil|_,qJ;=—F'(0), which is the clean gas

The above-given assumptions induce some restrictiongansverse velocity. Then, the tiriea particle needs to travel
on the calculations of the solution as explained in the follow-from the propellant surfacey& —1) to the positiony; is

ing. The equation foW, is

F+J
3+ —==0.

S (16)

The problem would be still incomplete without the following
boundary condition:

*
pW

J(—-1)= Vi

=Vou, Vpu>0, (17)

determined by

f fyl 0 dy
-1 Vp(y)
1N, behaves as $/near 0, so that the above-given expres-
sion indicates that the particles never reach the yire.
On the other hand, if conditiofl8) is not observed, the
two solutions forJ; would be complex, therefore unphysical.

The relationV,=0 cannot be used a4 =0, but only aty,
>0. In that case, the behavior of the solution near the posi-

where V,,, is the nondimensional particle velocity at the tiony; is found in the form

lower propellant surface. A similar condition can be written

for particles from the upper propellant surfacé(1)
try line, it may be expected that there exists a positigfior
which J(y;)=0. In this case, at the poigt=y,, the differ-
ential equation(16) is not Lipschitzian and the problem is
not defined correctly[A differential equation in the form
z'=¢(y,z) is said to be Lipschitzian if the functios is K
Lipschitzian with respect to the second variahld.e., 3K
>0N(Y,21,25) | (Y, 21) — (Y, 21)|<K[zy— 25| I ¢ is
continuous with respect to the two variableandz and isK
Lipschitzian with respect ta, the Cauchy-Lipschitz theo-

—V,w- The gas transverse velocity is zero at the symme-

Iy)=1/ (yl)(y —y)¥2+0(y, —y) Y2

Then the new positiog; >0 can be reached in a finite time,
whereasy,;=0 has previously be found to be an asymptotic
position. In addition with the circular curvature of the
streamline imposed by they, —y behavior aty;, particles
would oscillate around/=0. In this case, the solution in
self-similar form V,(x,y)=J(y) is no longer acceptable.
Thus the present study is limited to flows satisfying condi-
tion (18).

Taking into account this conclusion, the analysis may be

rem indicates that the differential equation admits only ongjmited to a half-domain. We choose the lower domain
solution with boundary conditions of Cauchy type. In thef(x y)e[00[ x[—1,0]}.

case of Eq(16), the function¢= ¢(y,J) is clearly not Lip-
schitzian] For (16) and (17), the transverse positioyy can

only be positive: the particle carried by the fluid and by its

own inertia cannot stop before the fluid stopy &t0, it may
only cross the ling/=0. Then, two kinds of solutions, lead-
ing to two different behaviors, will be distinguished:

(1) y,=0, the particle transverse velocity value is zero on

the symmetry line.

(2) y1>0, the particle transverse velocity value is nonzero

on the symmetry line.

C. Longitudinal velocity U,

The projection of the particle momentum equation on the
X axis is

6 & 20
s ¢ @0

The associated boundary condition is
G(—-1)=0. (21
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This condition, in addition t417), means that the particle is

orthogonally released from the plane surface of the propel-

lant. With condition(18), the longitudinal component of the
particles’ velocity reaches a maximum at the lipne 0 for

eachx coordinate. With the same treatment near the symme-'~g 07

try line as the one for the determination §fthe maximum
of G is located aty=0 and has the following value:

—1+\1+4SF(0)
2S '

As Gy=<F’'(0), the maximum particle velocity is smaller
than the maximum gas velocity, as expected.

(22)

G(0)=Gy=

D. Particle mass concentration  p,

The functions] and G being determined, particle mass
concentration inside the channel can be now calculated.

As has been done fay; andV,, the first idea is to seek
pp in a self-similar solutiorH(y). The first requirement is to
impose a uniform boundary condition at the wall:

H(=1)=ppw. (23
wherep, , is a constant value. Then E() reduces to
HG+JH'+J' H=0. (24)

T. Féraille and G. Casalis
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FIG. 3. Comparison of the self-similar form solutibhand the PDE solu-
tion p, of the particle mass concentration)at 2, 4, 6, 8, 10 withx,=1.
R=10% S=10"1, V,,=0.1, andp,,= 1. Apparition of a plateatP, be-
tweeny=—0.9 andy=—0.25,P,=V, ,p,,=0.1.

y) —(1+Gg 13y)
1

H(y)=H(|)<

However, as will be explained in the following section, this Due to expressions(19) and (22), the coefficient (1

self-similar solution is not bounded wat= 0. In order to avoid
this nonphysical behaviop, must be fixed to O at the front
wall (there is no particle injection at the front walln that

+Gy/J,) is always positive for flows obeying condition
(18), so that the solution is divergent near the symmetry line.
That is the reason why we rather work with the complete

case, the boundary condition must be dependent onxthe partial differential equation probleni(26)+ (25)}, which

coordinate and becomes
VXE[Oioo[!pp(xa_l):?)p,w(x)! (25)

with 5, =0 at x=0 and lim_ ..oy w(X)=ppw- A self-
similar solution is no longer possible, E®) is now a partial
differential equation:
ppG-i-XG%-FJi—I;p-FJ/pp:O. (26)
In a practical way, thg, ,, function is the concatenation of a
constant value functiofequal top, ) for x>x, and of an
increasing function from 0 fok=0 to p,,, for x=x,. In
Fig. 3, the two kinds of solutiop, andH are plotted for
Vpw=0.1, Xg=1 at the abscissas=2,4,6,8,10. As men-
tioned previouslyH exhibits a diverging behavior close to
the symmetry line. Apart from this regiom, and H are

nearly identical. Moreover, it must be pointed out that par-
ticle mass concentration, has a nearly constant value on
the major part of the channel height. An estimation of thisX’

plateau is notedP, (see Fig. 3.
1. H behavior

In order to explain the divergence of the solutidmear
y=0, let us define a point of-coordinatel located in the
vicinity of the symmetry line. Then E@24) can be expanded
for [y—l|<1 in

JiyH' +(Go+J)H+0o(y—1)=0, 27)

using J; and Gy from (19) and (22). The solution of this
equation is

has a zero value at the symmetry line.

2. pp behavior

Compared with the fluid flow, the divergence of the par-
ticle velocity field (Jv,;/dx;) has a nonzero value because
pp is not constant. More preciselyq,;/dx;)(0) =G+ J;
<0, so that there is a contraction of the volume near the line
y=0, and then the particle mass concentration increases
close to the symmetry line as the functiehdoes. Thus it
appears thaH may be a good candidate for an asymptotic
approximation of,, for x> 1. Actually, in order to prove this
assertion, let us consider the functid®(y,y)=pp(X,y),
with y=1/x. Forye[—1,7] with <0 and forx>1, the
function R can be sought in the form

R(x,¥)=Ro(y)+0(x).

Equation(26) gives the following equation at order O for
except close t¢y=0 whereR depends strongly on the
coordinate:

IRY+(G+J')Re=0, (29)

which is identical to Eq(24). Furthermore, we assume that
Ppw— Pp.w @SX— so that the boundary condition associ-
ated withR, is

Ro(—1)= Pp,w -

Finally, the problem fofR is identical to the problem fa,
S0 Ry=H. The agreement between both solutions is shown
in Fig. 3.
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Even if the evolutions op, andH are the same on a with the unknown column vector:
large extent of the coordinate, we shall work with the com- T

. : du
plete__problem{(26)+(25)} to avoid any problem with the Z= af’d_f’ 01,0,8p,0p,Pp
stability study. y

The 7X7 matrixD is given in Appendix A.

In system(29)—(32), equations for particles are non-
] ) ] . Lipschitzian on the axig=0—becausé&/,(0)=J(0)=0, as
Now that the mean flow is determined, a linear stability geen earlier. So Eq$30) and (32) cannot be integrated be-

theory can be applied. Although we are aware that our apgyeen the two physical boundarieg£0 andy=—1).
proach is not consisteff,we consider perturbation’ in the

normal mode form

q’'(x,y,t)=q(y)expi(ax— wt),

as is usually assumed for a strictly parallel mean flow. Math- L€t us now determine the seven boundary cgnditions of
ematically, the factorization of the perturbation into the nor-the problem. We only consider the varicose modgome
mal mode form is not valid in the case of the Taylor flow conditions correspond to usual conditions for eigenmodes
because the basic flow depends on the streamwise coordindfmogeneous conditions at the boundaréegressed at the
x. As a consequence, stability results depend on the formd2orous wall, while the other ones corresponding to the cho-
lation of the problend. Despite this approximation, studies S€N Symmetryvaricose mode in this cagmust be expressed
on the monophasic flow have shown good agreement witigt the symmetry line. 'I_'here is no perturbation in the injection
results obtained with more consistent approaches and witRroc€ss, so that conditions & —1 are
experiments. . | 0i=0, =0, 5,=0, pp=0. (33)
Linearizing Egqs(6)—(9) (in which the action of the par- _ _ _
ticles toward the flow is no longer neglectethd introducing ~ Equations(29)—(32) show that particle and gas perturbations
the expression of the above-determined mean flow lead tbave the same symmetry properties, and that the varicose

V. STABILITY STUDY

A. Boundary conditions and translated boundary
conditions

0,=0,

the following system:

mode is obtained with two conditions pt=0:

a1 (29) W o 5,-0 (34)
ial;+ ——=0, —=0, 0;=0.
f dy dy f
o R dpp . pp. . . Relations(33) and (34) provide the seven necessary bound-
_'“’Pp+'“PpXG+GPp+Jd_y+‘] ppt s UpTiapplp ary conditions for integrating29)—(32) in the segment
[—1,0l.
L 3Ppa 15 do, ~0 (30) As previously noted, Eq$30) and(32) are not Lipschit-
ay P Po dy ' zian aty=0. The solution we choose in order to circumvent
N this difficulty consists in translating conditiort84) from y
o0+ O 45 ot doy ~0 toy=y,, wherey, i tive and close tp=0. Thi
— i w0+ 0¢F' + 0 XF"+i axUF —F — =0 toy=yc, wherey. is negative and close tp=0. This
dy method is also employed in the axisymmetric case in order to
1/ d2% prevent any problem near the axisEach quantity(mean
=—iaf)+§ W;_ QZQf) flow and perturbationis developed into a regular Taylor

p oy Ppoa
+§px(G—F )+ gp(up—uf),

expansion in the vicinity off=0. At leading order, with the
supplementary conditiondp,/3dy)(x,0)=0, the two follow-
ing relations, called translated boundary conditighBC),
are readily obtained:

db S
—ia)f)f—ﬁfF’-i—iaXl'}fF'—Fd—y iycaly+0¢=0,
35
. 2n . — —iaRyp— (—iwR+F;R+iaRxF + a?)y.l; 39
:_%4_1 H_ 25 +&(J+F)+Q(A —04)
dy Rldy? *Y7s s e vt di
+——=0,
du, dy
~1olp+ 0,G+ialXGH+opXG +Jd_y:§(uf_up)’ and these relations replace conditiof3}). [Theoretically,
R (320  we are sure thatdp,,/dy)(x,0) is equal to zero if there is no

o ~ dvp 1
—vap+|avaG+va'+Jd—y=g(vf—vp).

injection of particles on a segmep®x;] with x;>0. But
numerically, the weaker assumptionls, ,,/dx)(0)=0 is

Such a system can be written as a first-order system of seveéifficient. All the results will be presented by using Ko-

ordinary differential equations:

d-
c.z:(——D-).z:o,
dy

tation § indicates the value of the quantifyaty=y..

Finally, the stability problem to be solved reduces to
Egs. (29)—(32) with conditions(33) and (35), and the inte-
gration is done from the walf=—1 up toy=y..
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TABLE I. Comparison of Isakov result®n the left-hand sideand present study resultsn the right-hand side
for particle-laden Poiseuille flow. The uniform mass concentration,is0.1. S,=S/R is the Stokes number
based on the viscous characteristic time.

Su Rlsakov alsakov wlsakov Rc a, ¢
C Cc [
2x10°° 6321.2 0.9852 0.248 44 6321.2 0.9852 0.248 44
1074 33340.5 0.7830 0.128 98 33342.4 0.782 97 0.128 98
102 6768.3 1.0012 0.254 80 6771.8 1.001 2 0.254 80
B. Numerical aspect C. Spectrum for temporal analysis

With the purpose of discretizing the eigenvalue problem,  The discretized operator spectradr= o, + w;i (a tem-
a fourth-order compact numerical scheme developed by Maporal theory is used, a positive value ®f corresponds to an
lik et al’®is used. The eigenvalue may be determined eitheunstable basic floyis sought by fixinga to the most spa-
by a shooting method—based on a Newton—Raphson cortially amplified monophasic mode obtained with a real
vergence procedure—or byLarack routine determining all number. Thus if one of the eigenvalues of the spectrum has a
the mathematical eigenvalues of the discretized problem. Theositive imaginary part, the particles have a destabilizing ef-
code has been validated for the particle loaded plane Pofect. Conversely, ifw; <0 the particles tend to stabilize the
seuille flow, whose numerical results have been published bffow. In Figs. 4 and 5 the evolution of the eigenvalues when
Isakov et al'® Table | compares the critical values, corre- adding particles are plotted, for values BR,V,w), re-
sponding to a growth rate equal to zeRy, a¢, andw, for  spectively, equal to (10", 1000, 0.1 and (103, 1000, 2
different Stokes numberS,=S/R and for a uniform mass and for several values gi,,, with a=3.650-0.3906, x
concentratiorp,=0.1, which is an acceptable solution in the =10, andx,= 1, the evolution of the eigenvalues when add-
case of the particle-laden plane Poiseuille flpBecause the ing particles are plotted. In Fig. 4, the temporal growth rate
viscous diffusion has the main role in plane Poiseuille floww; decreases witp, ,, so the addition of particles stabilizes
stability, the Stokes numbe$u=§(a/L)2(p3/pf) used by the flow. On the other hand, in Fig. &; increases with
Saffman and Isakov is defined by the relaxation time versug,, ,,; this means that the particles destabilize the flow.
the characteristic diffusive time. In our case, the principal Only a part of the modes which seem to exist in the
actor is the convective termwvia streamline curvature—s®  single-phase flow have been plotted. Many other modes are
corresponds to the relaxation time versus the characteristigenerated by the numerical method, they do not converge
convective timel The code also has been validated by com-when refining the grid. It has been checked, at least for
paring the results to the ones for the plane monophasic Taynonophasic modes, that the plotted ones are independent of
lor flow (see Ref. 2 the numerical mesh. As a conclusion, we can note that in all
cases, the most amplified gas mode remains the most ampli-
fied two-phase flow mode. We did not find any counter-

2 4 Q monophasic
] > Pow = (1)
Pow =1+
- - 2 o
! - Pp =3 Q monophasic
| o w3 ] P = 0.
- ow = 1 1 o Ppw =05
0 ¢ Pow = 10. i q p:w =
i A o=15 . A p,=2
-1 = L Pow =20 0 4 4 o Do =5
> P, =10
1 A =20
2 - 1] m =50
8 ] —
3 - 2
| s 1 é
.3 -
-4 7] o -
] o Ph
-5 = ‘ O ]
i ) 5
5 - A ]
g o q o /A -6
-7 - i
I T T T 1 I T T T T I T T  § T I |l T T T I
20 30 40 50 60 7 = | R L e | S P e e e
@, 20 30 40 50 60

FIG. 4. Temporal spectrunk=1000,V,,=0.1, S= 1071, Stabilizing ef-

fect of the particlesa=3.650-0.3906, x=10, andx,=1. The lines with FIG. 5. Temporal spectrunR=1000, V,,=1.0, S= 10"3. Destabilizing
arrows indicate a possible evolution of the single-phase eigenmodes witkffect of the particlese=3.650-0.3906, x=10, andxy= 1. The lines with
addition of particles. The circle points out a possible destabilization of anarrows indicate a possible evolution of the single-phase eigenmodes with
eigenmode but it still is stable. addition of particles.
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FIG. 6. Comparison of lineafsolid line) and complete computatioripoints in the case of weak particle mass concentratiéfs,=0.1, R=10% andS
=102

example of such an assertion. So, we shall only study the L L
most amplified gas mode from now on. L(@0,0).21=— a1~ (a0,0). 20~ Z—(@0,0). 29
. . Pp,w
In Figs. 4 and 5, the square symbols represent eigenval-
ues obtained for the one-phase flow stability equations. It =-r.z,, (37

appears that particle addition in Taylor flow does not create _
another instability mode and only modifies monophasic in-wherea; andz, are the unknown parameters. With the pur-
stability modes. A similar propositon was given by Pose of determining the correctian of the complex wave

Saffmaﬁ-z for partide laden p|ane Poiseuille flow. numbere, the Fredholm alternative is used. It shows that the
algebra-type problemd-u=f, where A is not invertible
D. Weak particle mass concentration may have solutions only if the given functidrs orthogonal

. . _ _ to the kernel of the adjoint operatot*. In our case, the
As _explamed prew_ously, th_e Spectra obtained either foroperatorﬁ(ao,O) is not invertible because, is searched as
the s’_mctly _monophasm e_quat_|0ns or for two-phas_e flowan eigenvalue of it, so+ £1.Z,) must verify the orthogo-
equations withp, ,,=0 are identical. Thus, the continuity of nality condition
the eigenvalues with respect g, ,, may be guessed; the
goal of the present section is to demonstrate it. In this sec- (zx|_ 1 z 0, (38)
tion, as in the following, results are given with the spatial
linear stability theory, so onlyr is a complex number. As a wherez* belongs to the kernel of the adjoint operattj of
matter of interest, ity; is negative(the growth rate is-a;),  £(ay,0). Relation(38), called “solvability condition” gives
the solution is unstable. the linear correctiony;.°
We focus the stability analysis on small valuespgf,, . In order to determine the latter, the first task consists in
For example, the wave numbaris expanded into the form:  solving the adjoint problem. Keeping in mind that the direct
a=ag+ppway. Consequently, the initial eigenvalue prob- problem £(ay,0) is not Lipschitzian ay=0, so the adjoint
lem L(a,ppw).Z=0, whereL(a,pp y) is the linear operator 2% is. Therefore, as has been done for the direct problem,
and Z the unknown vector, is written: TBC must be determined &t for the adjoint operator. Two
techniques are possible.

alj—s(ao,O).Zo (1) The adjoint operator is calculated in the segmjent,0],
so boundary conditions gt=0 are determined directly.
The same procedure used for the direct problem is ap-
(@0,0). 20+ 5(“0,0)-31) plied. This gives a set of conditions gy, to solve
L3 .
+0(ppw)- (2) The adjoint operator is determined|ir-1,y.] and TBC
for £ are determined in order to eliminate the noninte-
At order 0, the known monophasic problem is recovered: gral terms which appear in the integration by part used
for the calculation of the adjoint operator.

L(a,ppw)-Z2=L(ap,0). 2o+ ppw

14
+
J

p,w

L(a,0).2,=0. (36)
For TBC of ordern=1, the two ways lead exactly to the
At order 1, an inhomogeneous problem is obtained:  same analytical expressions presented in Appendix B.
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FIG. 7. Influence of the boundary condition shape on stability results. Evolution of the imaginaey, pathe eigenvaluer vs p,, , for two kinds of parietal
particle concentration la, ,,(x) plotted on the left-hand side wit,=5.V, ,=1, R=1C, S=1073, andp, = 1. Abscissa varying from 4 to 7.

Results from the linearized behavior with the mass conit cannot have any influence on stability results. Two differ-
centration at the propellant surfapg,, (solid line) and from  ent shapes have been tested called “cos” and “tanh” whose
the complete computatidipoints are presented in Fig. 6, for expressions are, respectively,

a Stokes numbe®=10"?, a Reynolds numbeR=10*, and

a particle speed ejectiov, ,,=0.1. Both methods give com- Pow 1 X>Xo
parable results for parietal mass densjty,, up to 0.1 ‘““cos” 1—cos(7r(x/xo)) .
(Ppw-Vpw=10"?); this is true for the wavelength, (on Pp.w 2 if x<Xo,

the lefy) and the growth ratey; (on the righj.
tani(10(x/xg) —5) +tanh 5

2tanh5

E. Parametric study “tanh”  p,

In this section, results from various computations are The left-hand side of Fig. 7 gives two different shapes of
shown in order to give some ideas on the influence of eack,o functiorip,,  with x,=5 with the corresponding stability
param_eter on stability chara(iterlsch. We successively |°°|‘esults(grovvth' rate plotted on the right-hand side. As can be
at the influence of the shapedf ., thex, value(upstream  ghqerved, results are rapidly brought together downstream of
abscissa of the constant particle mass concentration at thge positionx,, so that the shape of the boundary condition
porous wall, the value ofV,,,,, and large values gfpy, - does not have any influence on stability results. This can be
explained by the following remark. The injected mass defect
is convected by the gas so that for lamgkx, values this

To solve the PDE26) in order to determingp,, the  defect is rejected close t=0, and we know that the insta-
boundary condition ay=—1, p,, must be specified. Its bility is mainly governed by the streamline curvature near
value and its first derivative at=0 are set equal to 0 and a the porous walf. In the following, x, is fixed to 1. As the
nonzero constant value, ,, is imposed forx=x,. But the  basic single-phase flow becomes unstable frer®, the in-
shape ofp, ,, for 0<x<X, is not known, it is an artifact fluence of the shape of the injection for X is negligible in
allowing p,, to be bounded close to the symmetry line. Thenthe amplified regime.

1. Influence of the shape of p, , and of x o

TABLE II. Influence of particle ejection speed, ,, on correctiona; at x=10 with x,=1 andw=30.

Pp(vp,w) Rqal)(vp,w) Im(a'l)(vp,w)
R S pow P,(Vpw=1) Re(a;) Im(ay) Re(ay)(Vpw=1) IM(a)(Vpw=1)

10 1073 1.0 1.0 3.302%10°? —3.1627 102 1.0 1.0
10° 1073 10°* 9.88< 1072 3.3503<10°2 —3.1129% 103 1.01x10°* 9.84x 1072
10° 1073 102 1.12x1072 3.8244x 1074 —3.5520x 104 1.15x10°2 1.12x10°2
10t 107t 1.0 1.0 0.807 69 1.0346 1.0 1.0
10t 107! 10t 9.93x1072 7.8222x 1072 0.13891 9.6% 102 1.34x107*
10t 107t 102 9.84x10°8 7.7238x10°° 1.3803x 102 9.56x 102 1.33x10°2
10t 10! 1073 1.12x10°3 8.829 1x10°* 1.5779x 103 1.09x 103 1.52x10°3
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FIG. 8. Dependency of number with particle mass concentration ratiy,(V, ,)/P,(V,w=1) created by two different ejection speeds,=1 andV,
=0.1: P,(Vpw=0.1)/P,(V,,=1)=9.89x 10 2 R=10%, S=103% x=10 andx,=1.

2. Influence of V , , 3. Case of large values of p, ,

Now, let us have a look at the role of injection speed of  Figures 9 and 10 show that by increasjng,, , instabil-
the particlesv, ,, on stability results. In Fig. 8, the values of ity wave numbers get closer to inviscid flow instability ones.
the real and imaginary parts of are plotted as function of In order to understand such behavior, it must be pointed out
pp,w for two values ofV, ,,. The twox abscissas are scaled that increasing particle mass concentration is like increasing
together in order to havep, (Vow=1)=K.ppuw(Vpw  the mass density; of the fluid for the definition of the
=0.1) with K being the ratio of the two plateau values Reynolds number. In fact, fos,,>1, perturbed fluid mo-
(9.89x 10 ? as indicated in the captionThe platealP, has  mentum equation31) indicatesils ;~ 0, ;, so that(31) and
been defined in Sec. IV D, see also Fig. 3. kprand fora;, (32) lead to[ (41)«—(31)— p, X (32)]:
the two curves are superimposed, the values afe conse-
%Er(\:tilt))//.determined by the plateau for each particle injeCtion—in(1+ﬂ,)+0(F’+FpG)+z}x(F”+FpG’)

di
+iaxﬁ(F’+FpG)+(FpJ—F)@

P,(Vpw)
_ _ P\ Vpw
a(Vpw,Ppw)=a| Vpw 1,Pp(vp,W: 1) Ppw |- (39 Ll A
—iapt = | g a2t |+ PPx(G-F)
PTR dy? S
This simple expression is confirmed in Table Il obtained for .
weak values op, ,, as described in Sec. VD. In that case the +0l 0.5 d_u f,)
previous relationshig39) becomes Tdy’ )Y
P,(Vp.w) —iwd(1+py) —0(F'+ppG)+iaxo(F'+p,G)
ay (Vo) =55 an(Vpu=1). (40 )
p _ do
+(PpJ_ F) d_y
As indicated in Table Il, this estimation works better for
weak Stokes numbers. dp 1(d*%
Relation(40) points out the role of the plated®, . It is = d_y+ Rldyz” ¢"?
interesting to note that this value, may be estimated for . .
small Stokes numbers. In this case, very close to the wall, the Pp oo du
particle transverse velocity evolves rapidly frafg,, to Vi * S (J+F)+0} 0.9, dy’ P (41)

(=1), whereas the particle longitudinal velocity is negligible,
so that the control volume, with a fixed number of particles,The left-hand-side terms of E¢41) are of order
is divided by V,,. Consequently, the concentratiqs,

evolves rapidly fromp, , to the plateatP,= p, ,Vpw. Fi- Oconv=min([(1+pp)ll2.I(F" +ppG)2.
nally the correction, is proportional toV, ,, (in particular
the sign ofa; is not modified byv, ). [(F"+ppG )2l (ppd = F)[2)=(1+P,),
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371 7 pinching of stability results for both viscous and inviscid
] flow is. As only the viscous Stokes drag term is kept and
37 only a one-way coupling computation is done, the present
. analysis is actually limited to small particle mass concentra-
3.69 tion. However, the previous remark gives a practical tool for
1 ——&— R=1000 determining the main tendencies: knowledge of the
268 d¢ —=4—— R=3000 monophasic growth rate and of the inviscid evolutionaof
1F —6— R=10000 . : .
R ——— Inviscid with respect top, ,, (at the prescribect value) determines
367 whether particles stabilize the flow or not, at least at large
] particle mass concentration. If the monophasic growth rate
] value at fixed Reynolds numb&ris larger than the inviscid
3‘66_: growth rate values for large value of, ,, then particles
] stabilize the flow. Conversely, particles destabilize the flow
3.65 when monophasic growth rate value is lower than the invis-
§ cid growth rate value obtained for largg ,,. Thanks to the
3t 7T T T T T T monotonous evolution ofr with respect top,,, (at least
0 20 40 60 80 100

when the monophasic wave number is not close to the limit
value of a given by the inviscid result the last remark may
FIG. 9. Evolution of the wave number, with mass concentration at the constitute a criterion for the determination of the effect of the
propellant surfaceS=10"?, V;,,=1, ©=30,x=10, andx,=1. Pinching  addition of particles upon stability. The sign of the modified
of the viscous resilts toward inviscid results. growth rate also provides a similar criterion but only for
small particle concentrations.

P pw

so that the characteristic value of the convective t€gg,,

is not only larger than the characteristic value of the diffusive, ;| CONCLUSION

term of order 1R, but is increasing witlp, ,,. Therefore the

effective Reynolds number is much larger, fgy,,>1, than The present study is a first investigation of the particle
the one used by definition. Care must be taken in deﬁning;ffect upon Tay|0r flow Stabmty’ whose know'edge is rel-
Ocony Which is estimated by the quadratic noffiXi|,, which  evant in order to understand thrust oscillations of solid-
corresponds to the quadratic average of the funcioim  propellant motors. First, a solution in a self-similar form is
[—1yc]. But, pp(x,0)=0 and @p,/dy)(x,0)=0, so thatin  found for both fluid and particle velocity fields when the
a neighborhood of the axig=0, convective and diffusive condition 45F (0)<1 is fulfilled. The particle mass concen-
terms are of the same order as in the single-phase flow. Thigation p,, cannot be sought in a self-similar form because of
may explain the small but persistent differences observed fgfg divergence near the symmetry lige=0, so that a PDE
large particle mass concentration leygl,, between viscous has to be solved in thg, y) plane. A linear stability study is
and inviscid results. If the convergence is not proved, theyerformed for this particular flow. Based on the spectrum of
the linearized problem, it appears that particles would not
create extra instability modes compared with the single-

-0.39 I
R = 1000 phase flqw, but would only m_odlfy its modes. The study of
‘ ——&-— R =3000 tiny particle mass concentration enables us to determine a
0.4 —OS— R=10000 linear correction ofa from the monophasic study, and to
—— Inviscid L i,
demonstrate the expected continuity of stability parameters

-0.41 from one-phase to two-phase flow. Finally, it appears that
particles act upon the Reynolds numiBeby virtually reduc-
ing fluid viscosity or increasing the mass density of the as-
sociated flow, as described by Saffffamnd Isakov and
Rudnyak!® It follows that the added particles tend to bring
stability modes close to two-phase flow inviscid modes. The
role of the ejection speeW, ,, is also explained: it mainly
exerts influence on particle mass concentration especially by
changing the platea®,, whose influence on stability ap-
pears to be nearly linear. Finally, in order to know if particles
stabilize or not, a simple criteria is proposed: it is based on
inviscid results for large, ,, and monophasic results. Then,

P o as the Reynolds number and the Stokes number are known,
FIG. 10. Evolution of the growth rate «; with mass concentration at the so the “mlt_ Vallfle ofa is, given by mV_IS_CId results, and the
propellant surfaceS=10"2, V, =1, =30, x=10, andx,=1. Pinching  'ate of particle influencer,, characterizing the convergence
of the viscous results toward inviscid results. speed to inviscid results.

-0.42

-0.43 =

-0.44

-0.45
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APPENDIX A: STABILITY SYSTEM FOR THE
PARTICLE LOADED TAYLOR FLOW

As noted in Sec. V, the linear operator for stability can
be written in the following form:

dz

dy
with the unknown vectoZ on the form
dog .\ T
_1Ufyp1uplvplpp )

DZ,

where V' is the transpose of vectdf. Matrix D is of the

Channel flow induced by wall injection of fluid 359

V, -V
d4,7_ pS ’
1
d5,l_Wy
p
L1 oL Y
5’5_V_p | p §_ a +lw ,
14U,
5,6__V_W1
1
dos 5V,
p
L1 T
66—Vp —la p §_ d lw |,
Pp
MRSV

form g 1 ( &pp)
= iap,——|,
o 1 0 0 0 0 0 Y Ppm ox
dpy dpp dpz dpy dys O dyy g 1 ( pp  Pp (1 U dv; ))
= | ——+ 5| atiaU,+ o],
d3; 0 0 0 0 0 0 TV Ty vl R gy
D=| dg1 dsp dyz O 0 dse ds7 |, 1 _ U, dv,
d5'1 0 O 0 d5’5 d5,6 0 d7 s IaUp [?_X_ d_y+|w
0 0 des O 0 deg O
0 0 d;3 O dss dsg d77 APPENDIX B: ADJOINT OPERATOR BOUNDARY
- CONDITIONS
whose nonzero coefficients are
U, Rp In Sec. VD the Fredholm alternative is used in order to
dy ;= —iwR+ Ra— +iaRUi+ a?+ ?p define the linear correctioa; to the monophasic number.
X As already said in Sec. V D, two possible ways for determin-
d,,=RV;, ing the TBC of the adjoint problem exist. First, TBC can be
’ sought from knowledge of the boundary conditions/atO
dy e R(?_Uf of the adjoint problem and the technique is the same as in the
23 ay '’ case of the direct problem: these conditions are translated
4 —iaR from y=0 to y=y.. The second way is that the TBC are
24~ 1R, directly obtained from the integration by parts that leads to
Rpp the adjoint operator, in this case, the integration is done on
dy5=— 5 the segment—1y.]. The purpose of this appendix is to give
explicitely the TBC obtained with an expansion of the first
R order of the eigenfunctions.
d27:§(Uf Up)a At y=Y:
d31=—ia, (l) ZZ';:O:
’ (2 25=0,
dg1=iaVi, (3) 27=0,
i ia (4) ia®RZ% + 2% 1y.=0,
427 R (5) Z¥ly.—ia®Z5 +(R(—iw+F +ixFa®)
a? dv +(a)?) 25 =0,
d4,3=iw— —+&+ian+—f , (a)) 2
RS dy and aty=—1:
467 g 2 Z=0.
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